標識放流から推定した周防灘におけるナルトビエイの移動生態

野副 淳・大形 拓路・伊藤 輝昭
（豊前海研究所）

周防灘では近年、二枚貝類を捕食するナルトビエイの来遊により、アサリ等有用二枚貝類の食害や、漁具の破損等の被害が発生している。そのため、本県では2007年度より駆除を実施しているが、駆除を行う時期や海域など、漁業者の勘に頼って行っているのが現状である。そこで、知見の少ない当海域でのナルトビエイの移動生態を明らかにするため、ナルトビエイの標識放流実験を行い、再捕された個体のアーカイバルタグのデータを解析した。計測された水温は12.3～31.1℃の範囲、水深は2.5～200.1mの範囲であり、日中と比較して夜間は浅い水深帯へ移動していた。また、得られたデータの分析から、時期によって異なる海域に生息していることが示され、5月から8月までを豊前海、9月から11月までを別府湾周辺海域および別府湾奥部、12月から3月までを速吸瀬戸周辺海域および豊後水道北部、4月を豊後水道北部で過ごし、年間を通して、周防灘や別府湾、および豊後水道周辺海域を回遊する移動生態が推定された。

キーワード：ナルトビエイ、標識放流、周防灘、移動生態

ナルトビエイ Aetobatus narutobiei は温帯から熱帯の沿岸域に生息する板鰓類で1)、国内では有明海や周防灘等の西日本海域を中心に生息している。成体は体盤幅長が1m以上に成長し、また二枚貝類を捕食することから2)、生息域に属する県からは、二枚貝類への食害や混獲による漁具損傷など多くの漁業被害の報告があり、その被害防止・軽減のため有明海、周防灘では年間数十トンの駆除が実施されている。福岡県豊前海区においても、近年のアサリ Ruditapes philippinarum漁獲量減少要因の一つとして本種による食害が挙げられていることから3)、アサリ資源保護を目的として2007年度から駆除事業が開始され、2018年度までに計414.455kgが駆除されている（表1）。

しかし、いずれの海域においても、ナルトビエイの生態については知見が少なく、駆除は漁業者の経験や勘を頼りに行われていることから、客観的なデータに基づく効率的な駆除には至っていない。そのため周防灘を所管する3県は、ナルトビエイの生態調査を実施し、当海域でのナルトビエイの生態解明を急いでいる。本報では標識放流後、再捕された1個体のデータから周防灘に来遊するナルトビエイの移動生態について解析と推定を行ったので報告する。

方 法

1. 標識放流

標識放流は、2010年7月から2017年9月までの期間中、生態調査により捕獲されたナルトビエイ計97個体（表2）にアーカイバルタグを装着して行った。調査場所は行橋市沖（図1）で、アーカイバルタグはLotek社製LAT1100（図2）を使用し、結束バンドを用いてナルトビエイの尻鰭または尾柄部に装着した（図3）。測定した項目は水温と水深の2項目で、計測間隔はそれぞれ60分に設定した。

<table>
<thead>
<tr>
<th>年度</th>
<th>駆除重量（kg）</th>
<th>年度</th>
<th>駆除重量（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>52,220</td>
<td>2014</td>
<td>35,000</td>
</tr>
<tr>
<td>2008</td>
<td>35,000</td>
<td>2015</td>
<td>35,000</td>
</tr>
<tr>
<td>2009</td>
<td>35,000</td>
<td>2016</td>
<td>35,000</td>
</tr>
<tr>
<td>2010</td>
<td>35,000</td>
<td>2017</td>
<td>31,157</td>
</tr>
<tr>
<td>2011</td>
<td>35,000</td>
<td>2018</td>
<td>16,078</td>
</tr>
<tr>
<td>2012</td>
<td>35,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>35,000</td>
<td></td>
<td>414,455</td>
</tr>
</tbody>
</table>

a現所属：農林水産部 漁業課
b現所属：内水面研究所
表2 識標流放個体の詳細

<table>
<thead>
<tr>
<th>再捕年月日</th>
<th>体盤幅長(cm)</th>
<th>雌雄</th>
<th>タグNo</th>
<th>再捕</th>
<th>放流年月日</th>
<th>体盤幅長(cm)</th>
<th>雌雄</th>
<th>タグNo</th>
<th>再捕</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010.7.22</td>
<td>78.0</td>
<td>雄</td>
<td>231</td>
<td>-</td>
<td>2010.7.22</td>
<td>86.0</td>
<td>雄</td>
<td>535</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>81.0</td>
<td>雄</td>
<td>218</td>
<td>-</td>
<td>2010.8.2</td>
<td>82.0</td>
<td>雄</td>
<td>584</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>72.0</td>
<td>雄</td>
<td>235</td>
<td>-</td>
<td>2010.8.2</td>
<td>110.0</td>
<td>雄</td>
<td>529</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>85.0</td>
<td>雄</td>
<td>239</td>
<td>-</td>
<td>2011.8.2</td>
<td>80.0</td>
<td>雄</td>
<td>536</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>76.0</td>
<td>雄</td>
<td>230</td>
<td>-</td>
<td>2011.8.2</td>
<td>98.0</td>
<td>雄</td>
<td>534</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>82.0</td>
<td>雄</td>
<td>228</td>
<td>-</td>
<td>2011.8.2</td>
<td>80.0</td>
<td>雄</td>
<td>703</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>96.0</td>
<td>雄</td>
<td>312</td>
<td>-</td>
<td>2011.8.2</td>
<td>89.0</td>
<td>雄</td>
<td>709</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>78.0</td>
<td>雄</td>
<td>236</td>
<td>-</td>
<td>2011.8.2</td>
<td>116.0</td>
<td>雄</td>
<td>702</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>86.0</td>
<td>雄</td>
<td>239</td>
<td>-</td>
<td>2011.8.2</td>
<td>80.0</td>
<td>雄</td>
<td>705</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>72.0</td>
<td>雄</td>
<td>244</td>
<td>-</td>
<td>2011.8.2</td>
<td>122.0</td>
<td>雄</td>
<td>711</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>76.0</td>
<td>雄</td>
<td>227</td>
<td>-</td>
<td>2011.8.2</td>
<td>101.0</td>
<td>雄</td>
<td>637</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>102.0</td>
<td>雄</td>
<td>237</td>
<td>-</td>
<td>2011.8.2</td>
<td>81.0</td>
<td>雄</td>
<td>704</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>98.0</td>
<td>雄</td>
<td>245</td>
<td>-</td>
<td>2011.8.2</td>
<td>83.0</td>
<td>雄</td>
<td>712</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>92.0</td>
<td>雄</td>
<td>238</td>
<td>-</td>
<td>2011.8.2</td>
<td>71.0</td>
<td>雄</td>
<td>710</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>86.0</td>
<td>雄</td>
<td>234</td>
<td>-</td>
<td>2011.8.2</td>
<td>82.0</td>
<td>雄</td>
<td>708</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>80.0</td>
<td>雄</td>
<td>232</td>
<td>-</td>
<td>2011.9.11</td>
<td>78.0</td>
<td>雄</td>
<td>1115</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>84.0</td>
<td>雄</td>
<td>242</td>
<td>-</td>
<td>2011.9.11</td>
<td>80.0</td>
<td>雄</td>
<td>1146</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>118.0</td>
<td>雄</td>
<td>241</td>
<td>-</td>
<td>2012.9.11</td>
<td>65.0</td>
<td>雄</td>
<td>1149</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>76.0</td>
<td>雄</td>
<td>241</td>
<td>-</td>
<td>2012.9.11</td>
<td>75.0</td>
<td>雄</td>
<td>1151</td>
<td>-</td>
</tr>
<tr>
<td>2010.7.22</td>
<td>90.0</td>
<td>雄</td>
<td>331</td>
<td>-</td>
<td>2012.9.11</td>
<td>71.0</td>
<td>雄</td>
<td>1153</td>
<td>-</td>
</tr>
<tr>
<td>2011.8.1</td>
<td>83.0</td>
<td>雄</td>
<td>535</td>
<td>-</td>
<td>2012.9.11</td>
<td>60.0</td>
<td>雄</td>
<td>1154</td>
<td>-</td>
</tr>
<tr>
<td>2011.8.1</td>
<td>66.0</td>
<td>雄</td>
<td>587</td>
<td>-</td>
<td>2012.9.11</td>
<td>82.0</td>
<td>雄</td>
<td>1159</td>
<td>-</td>
</tr>
<tr>
<td>2011.8.1</td>
<td>77.0</td>
<td>雄</td>
<td>537</td>
<td>-</td>
<td>2012.9.11</td>
<td>85.0</td>
<td>雄</td>
<td>1143</td>
<td>-</td>
</tr>
<tr>
<td>2011.8.1</td>
<td>68.0</td>
<td>雄</td>
<td>533</td>
<td>-</td>
<td>2012.9.11</td>
<td>68.0</td>
<td>雄</td>
<td>1209</td>
<td>-</td>
</tr>
<tr>
<td>2011.8.2</td>
<td>73.0</td>
<td>雄</td>
<td>531</td>
<td>-</td>
<td>2012.9.11</td>
<td>86.0</td>
<td>雄</td>
<td>1209</td>
<td>-</td>
</tr>
</tbody>
</table>

※2011年8月2日放流個体のうち1尾が再捕されたが、データ破損のため個体の特定は不可能であった。

2. タグ水温データの補正

水温データに異常値を確認したため、信頼性を確認するため室内水槽で補正試験を行った。試験は、3℃区、13℃区、16℃区、20℃区、26℃区、30℃区の7区を試験条件に設定し、ALEC社製ACT20-Dとアーカイバルタグで同時に水温を計測し、両者の相関関係を求め、解析に使用するデータの補正を行った。

3. タグデータ解析と生息海域の推定

再捕個体から回収したアーカイバルタグからデータを取り出し、月および時間帯別の水温、水深データを集計した。次に補正した水温データおよび水深のタグ情報と、福岡県の浅海定線調査および、帶広市内海全域海面水温分布図、または図10東半島から速吸瀬戸周辺海域までを範囲とする大分県の浅海定線調査、速吸瀬戸周辺から豊後水道までの範囲とする大分県の沿岸定線調査結果を比較し移動経路の推定を行った。水深についてはタグに記録された日別最大水深を月ごとに集計した。Tukey-test により各月の有意差の有無（p < 0.05）を検定し、有意差が無い場合を同一群とみなしてグループ分けを行った。

福岡県が実施している浅海定線調査の水温データとの照合については、全ての調査地点で水温観測を行っている5m層のデータを使用し、調査日日毎のタグ記録水温のうち5m未満を遊泳した記録水温を平均して使用した。大分県浅海定線調査の水温データとの照合については、浅海定線調査点全層の水温データを用い、調査日日毎のタグ平均水深帯の水温と、同調の浅海定線調査の水温を照合した。

なお、生息海域の水深は海上保安庁が公開している海洋情報表示システム（http://www.marinemaps.go.jp/）を参考にし、タグの水深データについて、ナルトビエイの鉛直移動による浅海域の遊泳データを排除するため、日別の最大水深を使用することとした。
結果

1. 標識放流
調査期間中に放流した個体の平均体盤幅長は 84.0 ㎝（最大 125.0 ㎝, 最小 42.0 ㎝）で, 雌雄の比は, 雌 47 : 雄 50 であった。2019 年 10 月までに 2 個体が再捕され, そのうち 1 個体（タグ No.235）は雄の個体で, 放流後 356 日後に放流場所と同じ行橋市沖で再捕され（図 1）体盤幅長が 10.3 ㎝, 体重が 1.13kg 増加していた。もう 1 個体については, 大分県地先で再捕されたが, 詳細な再捕場所が不明であったこと, 回収されたタグの故障により読み取りが困難であったことからデータを得ることができなかった。そのため本報では前者のデータを用いて解析を行った。

2. タグ水温データの補正
再捕個体から回収したアーカイバルタグ（タグ No.235）と AEC 社製 ACT20-D で測定した実際の水温との関係を図 4 に示した。その結果, 20.1℃より低い水温ではアーカイバルタグのデータは実際の水温より高い傾向に, 20.1℃より高い水温では低い傾向となり, 両者の差は最大で 6℃であった。また, タグの記録水温と実水温の間には, 強い相関（r=0.9998）が見られ, 次式で示される関係が認められた。補正後はタグの記録水温と実水温の差は最大で 0.3℃と実際の水温とほぼ同等のデータを得ることができた（図 5）。

\[CWT = 1.99918 \times RWT - 19.935 \]
※CWT：補正水温, RWT：記録水温

3. タグデータの解析と生息海域の推定
（1）タグデータの解析
タグに記録された水深および水温の全データを図 6 に示した。放流から再捕までの間に欠損データは無かった。
記録水温の月別平均を図7に示した。水温の平均は、14.5℃(2月)〜28.3℃(8月)の範囲で、最も高い月は8月、最も低い月は2月であった。

記録水深の月別平均を図8に示した。水深の平均は、4.6m(6月)〜49.6m(1月)の範囲で、最も深い月は1月、最も浅い月は6月であった。時期別に集計すると、春期(3〜5月)が27.6m、夏季(6〜8月)が5.9m、秋期(9〜11月)が15.4m、冬期(12〜2月)が44.1mであった。

次に、春期(3〜5月)、夏季(6〜8月)、秋期(9〜11月)、冬期(12〜2月)の水深および水温のうち、各期の1日を抜粋し図9に示した。鉛直移動距離は生息海域の水深に比例し、時期によって差があったものの、どの時期においても活発な移動が確認され、夏期が最も小さく、冬期が最も大きかった。時間帯別に集計した水深を図10に示した。水深の平均は、18.0m(20時)〜30.7m(10時および11時)の範囲で、最も深い時間帯は10時および11時、最も浅い時間帯は20時であった。昼夜別に平均水深を集計する
周防灘におけるナルトビエイの行動生態

と, 昼（6〜18時）が27.4m, 夜（19〜5時）が19.3mであり, 日中に深く, 夜間に浅い傾向が見られた。

時間帯別に集計した鉛直移動距離を図11に示した。鉛直移動距離の平均は, 6.7（3時）〜8.7m（6時）の範囲で, 最も大きい時間帯は6時, 最も小さい時間帯は3時であった。昼夜別の鉛直移動距離を集計すると, 昼（6〜18時）が8.0m, 夜（19〜5時）が7.5mであり, 時間帯による鉛直移動距離の差はほとんどみられなかった。

月別生息海域について, 各月間の水深において検定を行った結果（表3）, 5〜8月（以下GR.1）, 9〜11月（以下GR.2）, 12〜3月（以下GR.3）, 4〜7月（以下GR.4）の4グループに分類され（図6）, それぞれの月別水深の平均と分散は, GR.1が1.72m, 169.9, GR.2が33.3m, 269.0, GR.3が75.5m, 467.5, GR.4が65.9m, 124.6となり, GR.1が最も浅く, GR.3が最も深い海域であった。

（2）生息海域の推定

生息海域のグループのうち, GR.1は日別最大水深の平均が12.2mと非常に浅い海域であった。記録された水深帯と豊前海への来航時期から, 本海域は豊前海であろうと推察された。記録水温と福岡県の浅海定線調査（9月）の水温を照合した結果, 記録水温は図12に示したとおり, stn.2および15付近の水温と一致していた。隣接する大分県の浅海定線調査（9月）の水温も照合したが, 最も差が小さい測定点においても1.2℃の差があったことから, 大分県地先ではなく, 豊前海に生息していたことが示唆された。

GR.2は日別最大水深の平均が33.3mとGR.1よりも深い海域であった。記録水深から, 豊前海以外の海域に移動したことが考えられた。記録水温と大分県の浅海定線調査（10月）の水温を照合した結果（図13）, 記録水温はstn.8および33付近の水温と一致していた。さらに, 表層の記録水温と海上保安庁が公開している瀬戸内海全域海面水温でも照合を行ったところ, 表層の記録水温は別府湾周辺海域の表層水温と一致していた（図14）。なお, 12月については

<table>
<thead>
<tr>
<th>水深1</th>
<th>水深2</th>
<th>P 値 判定</th>
<th>水深1</th>
<th>水深2</th>
<th>P 値 判定</th>
<th>水深1</th>
<th>水深2</th>
<th>P 値 判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年8月</td>
<td>1.0000</td>
<td>2011年9月</td>
<td>0.0121</td>
<td>2010年8月</td>
<td>0.8242</td>
<td>2010年9月</td>
<td>0.9567</td>
<td></td>
</tr>
<tr>
<td>2010年9月</td>
<td>0.0623</td>
<td>2010年10月</td>
<td>0.9955</td>
<td>2010年11月</td>
<td>1.0000</td>
<td>2011年2月</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>2010年10月</td>
<td>1.0000</td>
<td>2011年7月</td>
<td>0.9955</td>
<td>2011年1月</td>
<td>0.0222</td>
<td>2011年5月</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2011年1月</td>
<td>0.0000</td>
<td>2011年2月</td>
<td>1.0000</td>
<td>2011年1月</td>
<td>0.0000</td>
<td>2011年6月</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

図11 鉛直移動の時間帯別平均
図12 福岡県の浅海定線調査結果（9月）
図13 大分県の浅海定線調査結果（10月）

図14 瀬戸内海全域海面水温分布（10月）

図15 大分県の浅海定線調査結果（12月）

記録水温は stn.25 付近の水温と一致していた（図15）。これからのことから GR.2 および12月上旬は、別府湾周辺海域および別府湾奥部であることが示唆された。

GR.3 は日別最大水深の平均が 75.5m と4グループの中で最も深い海域であった。12月は中旬から深い水深帯へ移動しており、12月12日には 200.1m を観測し、その後3月下旬まで 36.7～157.2m の水深帯が記録された。記録水温と大分県の浅海定線調査（12月）の水温を照合した結果（図16）、記録水温は stn.15 および18付近と一致しており、速吸瀬戸周辺海域であることが示唆された。瀬戸内海西半において水深が 200m を超える場所は同海域のみであることからも GR.3 は速吸瀬戸周辺海域であることは明白である。ただし、2月および3月に関しては、記録水温と大分県の浅海定線調査の水温は一致しておらず、最も多い調査点においても±1.0℃の差があった。このことから、2月および3月は浅海定線調査定点よりも南方に生息していたことが示唆された。

GR.4 は日別最大水深の平均が 65.9m と GR.3 よりも浅い海域であり、5.9～94.4m の水深帯が記録された。記録水温と大分県の浅海定線調査（4月）の水温を照合した結果、最も近い調査点においても±1.9℃の差があったため、2月および3月同様、浅海定線調査定点よりも南方に生息していたことが示唆された。

GR.1 の5月について、中旬以降の日別最大水深は 10m 前後であり、再び豊前海へ回遊してきたことが推察された。記録水温と福岡県の浅海定線調査（6月）の水温を照合した結果、記録水温は stn.10 および12付近の水温と±0.3℃であり、概ね一致していた（図17）。隣接する大分県の浅海定線調査（6月）の水温と照合したが、最も差が小さい調査点においても±0.8℃の差があったことから、大分県地先ではなく、豊前海に生息していたことが示唆された。
考 察

有明海のナルトビエイは、水温が18～20℃を超える5月頃に来遊し、18℃を下回る11月頃に南下すると報告されている7)。今回、再捕された個体から回収した記録水深を解析した結果、夏期に浅い海域で、冬期に深い海域で生息していることが示された。そのため、周防灘のナルトビエイも有明海と同様、水温が低下する時期に好適な水温域を求め南下していると考えられた。

図17 福岡県の浅海定線調査結果（6月）

また、魚類の中には冬期活動が鈍り、冬眠する種類も報告されている8)。今回再捕された個体は時期や生息海域の水深に関わらず鉛直移動し、冬期も活発に活動している様子が確認された。時間帯別の記録水深、鉛直移動距離を解析したところ、日中は深い水深帯、夜間は浅い水深帯に生息し、日中・夜間問わず活動していることが示された。そのため、駆除作業は昼夜問わず行えること、夜間であれば浅海域、日中であれば深海域を中心に行うことで駆除効率を上げることができると考えられた。また、ナルトビエイは日中よりも夜間に摂餌していることが報告されており9)。当研究所が実施している胃内容物調査でも、浅海域に生息する貝を多く捕食していることから10)、夜間に浅海域を遊泳しているのは、摂餌目的であることが推察された。

移動生態について、豊前海では5月から9月頃にナルトビエイが漁獲されているが、それ以外の時期では漁獲されず、目撃情報もほとんど報告されていない。大分県の報告では、9月に豊前海で放流したナルトビエイが10月に別府湾で再捕されており11)、前述のとおり、豊前海の水温が低下する時期に、南方へ移動していることを裏付けている。

今回、記録水深や各種水温データとの照合により、7月～1月および5月～7月におけるおおよその生息場所が推定された。残る2月～4月の生息場所について、大分県の浅海定線調査点との照合では、いずれも記録水温の方が高かったことから、調査定点よりも南方に生息していたことが示唆された。大分県は、2013年8月に周防灘で標識放流した個体が翌年3月に佐伯市元猿湾で再捕されることを報
告しており，周防灘と豊後水道間の交流があることが明らかとなっている。そこで大分県が豊後水道で実施している沿岸定線調査の水温データと照合したところ，いずれの月も同月の stn.1～9 の調査点の平均水温と概ね一致していた。よってこの期間は豊後水道北部海域に生息していた可能性が高いと考えられる。

以上の結果をもとに，周防灘におけるナルトビエイの推定移動経路を図18に示した。周防灘におけるナルトビエイの移動生態については，5月から9月上旬までは豊前海，9月中旬から12月上旬までを別府湾周辺海域および別府湾奥部，12月中旬から3月までを速吸瀬戸周辺海域および豊後水道北部，4月を豊後水道北部で過ごし，5月中旬以降再び豊前海に回遊してくると推定された。

今回の調査では1個体のみのデータ解析のため，移動場所や時期に関して不明瞭な部分が残っている。今後もナルトビエイによる漁業被害の軽減のため，標識放流調査を継続して標本数を増やし，より正確な移動生態が解明できるよう周防灘3県が協力していく必要があると考える。

謝辞

本論文の作成にあたり，大分県浅海定線データの提供やデータの利用に関して多大なる協力を頂いた大分県農林水産研究指導センター水産研究部の大竹周作研究員（現所属：大分県東部振興局）に心より御礼申し上げる。

文献

1）中坊徹次. 日本産魚類検索「全種の同定2」（中坊徹次編），東海大学出版会，東京，2000。
2）山口敦子. 日本の沿岸域へのナルトビエイ Aetobatus flagellum の出現と漁業への影響，月刊海洋号外2006；45：75-79。
3）野副滉，大形拓路，佐積田貴彦，恵崎撮，黒川浩平．福岡県豊後海における網袋を用いたアサリの育成，福岡県水産海洋技術センター研究報告 2019；29：9-15。
5）海上保安庁海洋情報部HP（https://www.msil.go.jp/msil/htm/topwindow.html）最終検索日：2019年12月25日。
7）有明海・八代海等総合調査評価委員会報告，有明海・八代海等総合調査評価委員会 2017：366-376。
8）木下好治：ベラの冬眠並びに睡眠に就いて，動物学雑誌 1935；47：795-799。
9）科学研究費助成事業研究成果報告書，ナルトビエイの行動計測による二枚貝類の食害防除対策と沿岸生態系への影響評価 2018：1-5。
10）大形拓路，中川浩一，漁場環境保全対策事業（3）有害生物駆除手法実証事業（豊前ナルトビエイ）．福岡県水産海洋技術センター事業報告 2013；297-299。
11）三代和樹，楢下雄一，畔地和久，松並良美：豊前海におけるアサリ資源回復に関する調査研究③ ナルトビエイ生態調査．平成22年度大分県農林水産研究指導センター水産研究部事業報告 2012：208-210。
12）崎山和昭，畔地和久，松並良美：豊前海におけるアサリ資源回復に関する調査研究－3 ナルトビエイ生態調査．平成25年度大分県農林水産研究指導センター水産研究部事業報告 2015；227-231