有明海環境改善事業

(1) タイラギ潜水器漁場改善実証事業

的場 達人・廣瀬 道宣・兒玉 昂幸・長本 篤

有明海では近年底質環境の悪化が進行していると考え られ、広い範囲で浮泥の堆積、底質中の有機物量の増加 などが疑われている。また、それにともなって底生生物 の生息にも影響を与えていると考えられる。

福岡県では浮泥の堆積等によって底質環境が悪化し, 水産生物の生息が困難になった漁場の改善手法として覆 砂事業を行い,干潟域ではアサリ,サルボウ等の二枚貝 を初めとした水産生物の増産に大きな効果を上げてい る。しかし,沖合のタイラギ潜水器漁場では覆砂によっ て稚貝の着底の増加は確認されるものの,成貝まで成長 し漁獲につながる実績は上がっておらず,沖合域に適し た漁場改善手法の開発が急務である。

本調査は有明海福岡県海域で過去にタイラギ潜水器漁 業の主要漁場であったにもかかわらず,近年タイラギの 生息量が減少している峰の洲漁場を試験漁場とし,沖合 域における漁場改善手法の効果を検証することを目的と する。

漁場改善手法として,峰の洲斜面部に平面覆砂を実施 し,覆砂前後で水質,底質環境及び生物生息状況の変化 を把握し,それぞれの底質改善効果を検証する。

21年度に実施した峰の洲天板部における山型覆砂と22 年度に実施した峰の洲斜面部におけるサルボウ殻散布区 では、タイラギの生息状況の改善は認められなかった。 一方、平成21、22年度に実施した峰の洲斜面部に施工し た覆砂区では、対照区よりもタイラギの生息密度が高く なり、特に21年度に対照区の約5倍のタイラギの生息が 確認された。そこで23年度は従来(50m×240m)よりも 覆砂の形状を横長(34m×600m)にし、3つの水深帯 (水深5m,7m,10m)における効果を検証した。

方 法

1. 沖合域における斜面覆砂漁場調査

調査は、平成21~23年度に造成した図1に示す峰の洲 海域の斜面部の覆砂漁場で実施した。

(1) 底質調査

底質調査は図2に示した21年度斜面覆砂区,22年度斜面

覆砂区,23年度斜面覆砂区(水深7m),斜面対照区(水 深7m),23年度斜面覆砂区(水深5m),23年度斜面覆 砂区(水深10m)の6点で,平成25年4月~平成26年3月ま に計11回実施した。

底質試料の採取は潜水士が柱状採泥によって行った。 採取した底質は研究所内で1時間静置し,底質上に堆積し た浮泥の厚さ(以後、浮泥堆積厚とする)を測定した。

底質の酸揮発性硫化物量(以後、硫化物量とする), 強熱減量,泥分率,中央粒径値,硫化水素について,0~5 cm層,5~10cm層,10~15cm層に分けて分析を行った。泥 分率と中央粒径値は,粒度組成の分析結果より算出した。 酸揮発性硫化物量は検知管法,強熱減量は底質調査方法 (昭和63年環水管第127号) II,粒度組成はTrask法により 分析した。また,硫化水素については,菅原らの方法(砂 泥堆積物中溶存硫化物の簡便な現場抽出/吸光光度定量 及びその有明海北東部堆積物への適応:平成 22 年分析 化学 59 号) で分析した。

(2)生物調査

図3に示した調査点で,北原式定量プランクトンネット(目合 100 μ m)で海底上 1.5 mより海面まで鉛直曳 きにより試料採取し,タイラギ浮遊幼生の単位容積当り の個数を算出した。

底質調査と同じ調査点において、平成25年7月から10 月にかけて幅25cm,長さ1m,深さ1cmの底質を潜水ソレッ ジネットを用いて採取し、タイラギ初期稚貝の生息密度 を測定した。

また,平成25年4月から平成26年3月にかけて,1m×10 mの範囲内に生息するタイラギをラインセクト法により 採取し,殻長から24年級群と25年級群に分けて計数,それ ぞれ殻長の測定を行った。

併せて, 平成25年5月,8月,12月及び平成26年2月に,50 cm方枠内の表層5cmの底泥を採取し,生息するベントスの 種類,個体数,湿重量についても解析した。

(3) 深浅測量調查

平成 23 年度に実施した峰の洲漁場の斜面覆砂域において,音響測深器を用いた深浅測量を実施し,覆砂後の

形状変化を調査した。

図1 事業実施場所

図2 覆砂工事概要図

2. 沖合域における天然優良漁場調査

図3のst.5竹ハゼ南漁場において,次に示す調査を行った。

(1)タイラギ生息状況調査

平成25年7月から11月にかけて幅25cm,長さ1m,深さ1 cmの底質を潜水ソレッジネットを用いて採取し,タイラ ギ初期稚貝の生息密度を測定した。

また、1m×30mの範囲内に生息するタイラギをライン セクト法により採取し、殻長から24年級群と25年級群に 分けて計数し、それぞれ、殻長を測定した。

(2)底質調査

沖合域における斜面覆砂漁場調査の底質調査と同様の 項目(浮泥堆積厚,硫化物量,強熱減量,泥分率,中央 粒径値,硫化水素濃度)について,同様の方法で分析を 行った。

3. 覆砂漁場の水質

底質調査,生物生息量調査と同じ調査点において,連続 観測機器を設置し,底層の水温,潮流,酸素飽和度,塩分, クロロフィル蛍光値について10分間隔で測定を行った。 測定機材はJFEアドバンテック社製を用いた。測定時に はセンサー部が海底上10cmに位置するよう設置した。

4. 基礎生産力調査

図3に示した調査点において,次に示す調査を行った。 (1)クロロフィルa量

表層と底層 (B-1m) から採水したサンプル50m1をガラ ス繊維濾紙whatman GF/Fにて濾過し,水分を吸い取った 後にDMF (N,N-ジメチルホルムアミド)を5m1分注し,濾 紙上のクロロフィルaを暗所で1時間抽出後,遠心分離 (3,000rpm 5分)し,上澄み液を蛍光光度計 (TURNER DESIGNS 10-AU Fluorometer) にて吸光度を測定した。

(2) プランクトン組成及び沈澱量

また,北原式定量プランクトンネット(目合 100 μ m) で海底上 1.5 mより海面まで鉛直曳きにより試料を採取 し,プランクトン沈澱量を測定後,顕微鏡下でプランク トンの同定と個体数を計測した。

(3) 栄養塩

表層と底層(B-1m)から採水したサンプルの栄養塩(無 機三態窒素,珪酸塩,燐酸塩,TN,TP)を測定した。

無機三態窒素, 珪酸塩, 燐酸塩は, 採水したサンプル を 0.45 μ m のフィルターで濾過した濾液を, TN, TP は, 工場排水試験方法 (JIS K 0102) に従い, TN は銅・カド ミウムカラム還元法で, TP はペルオキソニ硫酸分解法 で分解後, 0.45 μ m フィルターで濾過した濾液をオー トアナライザー (BLTEC SwAAt AACS V)で分析した。

図3 浮遊幼生及び基礎生産力調査 調査点 ※このうち st.5(竹ハゼ南)は,沖合域の 天然優良漁場調査点と同じ調査点

5. 干潟域から沖合域にかけての底質調査

干潟域から沖合域にかけて 12 点の定点を設定し,0 ~5 cm層の底質(浮泥堆積厚,硫化物量,強熱減量,泥 分率,中央粒径値)を分析した。

図4 干潟域から沖合域にかけての底質調査点

6. 遺伝子解析

有明海,豊前海及び筑前海で採集したタイラギ集団で 次世代シーケンサーによる mRNA-seq を行い,集団規模 の推定及び集団間の遺伝的分化の推定を行った。

結 果

1. 沖合域における斜面覆砂漁場調査

(1) 底質調査

1)浮泥堆積厚

調査点別の浮泥堆積厚の平均値,最小値,最大値を表1 に,調査点別の浮泥堆積厚の推移を図5に示した。浮泥 の平均堆積厚は2.0 ~ 3.4 mmであった。全調査点で浮泥 堆積厚は10 mm以下と,タイラギの生息に適していると される値で推移した。 表1 各調査点の浮泥堆積厚(mm)

調査点	平均	最小	最大
21年度斜面覆砂区	2.8	1.0	7.0
22年度斜面覆砂区	2.0	1.0	3.0
23年度斜面覆砂区(水深7m)	2.3	0.0	6.0
23年度斜面覆砂区(水深5m)	2.7	2.0	5.0
23年度斜面覆砂区(水深10m)	2.5	1.0	7.0
斜面対照区(水深7m)	3.4	1 0	7 0

2)硫化物量

調査点別の硫化物量の平均値,最小値,最大値を表 2 に,各調査点における硫化物量の測定層別 (0~5,5~10,10~15cm層)の推移を図6~8に示した。

① 0~5cm 層の硫化物量

平均硫化物量は 0.010 ~ 0.174mg/g 乾泥であり,各調 査点を比較すると 23 年度斜面覆砂区 (水深 5 m) < 23 年度斜面覆砂区 (水深 7 m) < 22 年度斜面覆砂区<斜 面対照区< 21 年度斜面覆砂区< 23 年度斜面覆砂区 (水 深 10 m) であった。

水深 10 m区の 25 年 8 月と 26 年 2,3 月で, 0.2mg/g 乾 泥よりも高い数値が確認されたが,その他の調査点につ いては, 0.2mg/g 乾泥以下の水準で推移した。

② 5~10 cm層の硫化物量

平均硫化物量は 0.011 ~ 0.194mg/g 乾泥であり,各調 査点を比較すると 23 年度斜面覆砂区(水深 5 m) < 23 年度斜面覆砂区(水深 7 m) < 22 年度斜面覆砂区< 21 年度斜面覆砂区< 23 年度斜面覆砂区(水深 10 m) <斜 面対照区であった。

水深 10 m区の 25 年 9 月と 26 年 3 月,また斜面対照 区の 25 年 6,12 月では 0.2mg/g 乾泥以上の生物の生息に 不適な高い値を示した。

③ 10~15cm 層の硫化物量

平均硫化物量は 0.005 ~ 0.086mg/g 乾泥であり,各調 査点を比較すると 23 年度斜面覆砂区(水深 5 m) < 23 年度斜面覆砂区(水深 7 m) < 21 年度斜面覆砂区<斜 面対照区< 22 年度斜面覆砂区< 23 年度斜面覆砂区(水 深 10m) であった。

水深 10 mの 23 年度斜面覆砂区の 25 年 9 月と, 22 年 度斜面覆砂区の 25 年 10 月では 0.2mg/g 乾泥以上の生物 の生息に不適な高い値を示した。

硫化物量の平均値を層別に比較すると,22 年度斜面 覆砂区以外は10~15cm層の硫化物量が最も低かった。

表2 各調査点の硫化物量(mg/g 乾泥)

調査点	測定層	平均	最小	最大
	0~5cm層	0.091	0.000	0.199
21年度斜面覆砂区	5~10cm層	0.067	0.017	0.164
	10~15cm層	0.025	0.000	0.169
	0~5cm層	0.055	0.000	0.141
22年度斜面覆砂区	5~10cm層	0.061	0.000	0.146
	10~15cm層	0.080	0.000	0.396
	0~5cm層	0.036	0.000	0.133
23年度斜面覆砂区(水深7m)	5~10cm層	0.035	0.000	0.140
	10~15cm層	0.008	0.000	0.034
	0~5cm層	0.010	0.000	0.045
23年度斜面覆砂区(水深5m)	5~10cm層	0.011	0.000	0.058
	10~15cm層	0.005	0.000	0.049
	0~5cm層	0.174	0.021	0.398
23年度斜面覆砂区(水深10m)	5~10cm層	0.137	0.035	0.432
	10~15cm層	0.086	0.003	0.291
	0~5cm層	0.075	0.003	0.169
斜面対照区(水深7m)	5~10cm層	0.194	0.032	0.822
	10~15cm層	0.036	0.007	0.079

※ 硫化物 0.2mg/g 乾泥以上は生物の生息に不適

図 6 0~5cm 層硫化物量の推移

図7 5~10 cm層硫化物量の推移

図 8 10~15 cm層硫化物量の推移

3) 強熱減量

調査点別の強熱減量の平均値,最小値,最大値を表 3 に,各調査点における強熱減量の測定層別 (0~5,5~10,10~15cm層)の推移を図9~11に示した。

① 0~5cm 層の強熱減量

平均強熱減量は 3.0 ~ 5.5 % であり,水深 10m 区にお いてタイラギの生息に適するとされる 5 % の基準を超え た値を示したが,その他の区は概ね 5 % 未満であった。

② 5~10 cm層の強熱減量

平均強熱減量は 1.9 ~ 4.8 %であり,水深 10m 区と対 照区において 5 %以上の値を示したが,その他の区は概 ね 5 %未満であった。

③ 10~15cm 層の強熱減量

平均強熱減量は 1.4 ~ 3.5 %であり,21 年度区と水深 10m 区で5%以上の値を示したが,その他の調査点では, 概ね5%未満であった。

全調査点で調査期間を通じて変動が少なく,概ね5% 未満で安定して推移した。

表3 各調査点の強熱減量(%)

調査点	測定層	平均	最小	最大
	0~5cm層	4.6	0.1	6.4
21年度斜面覆砂区	5~10cm層	3.6	2.8	5.0
	10~15cm層	3.2	2.3	6.0
	0~5cm層	3.9	2.4	5.8
22年度斜面覆砂区	5~10cm層	2.6	1.5	4.5
	10~15cm層	2.1	1.6	3.8
	0~5cm層	3.3	1.8	4.3
23年度斜面覆砂区(水深7m)	5~10cm層	1.9	1.1	5.0
	10~15cm層	1.8	1.1	3.5
	0~5cm層	3.0	2.2	4.6
23年度斜面覆砂区(水深5m)	5~10cm層	2.0	1.1	2.7
	10~15cm層	1.4	1.0	1.8
	0~5cm層	5.5	3.0	11.3
23年度斜面覆砂区(水深10m)	5~10cm層	4.8	2.5	11.3
	10~15cm層	3.5	1.6	6.8
	0~5cm層	5.0	2.8	10.6
斜面対照区(水深7m)	5~10cm層	4.4	2.8	12.4
	10~15cm層	3.4	2.4	4.9

※タイラギの生息に適するとされる強熱減量は5%未満

図9 0~5cm 層強熱減量の推移

図 10 5~10 cm 層強熱減量の推移

図 11 10~15 cm層強熱減量の推移

3) 泥分率

調査点別の泥分率の平均値,最小値,最大値を表3に, 各調査点における泥分率の測定層別(0~5,5~10,10~15cm 層)の推移を図12~14に示した。

① 0~5cm 層の泥分率

平均泥分率は 10.2 ~ 27.7 %であり,各調査点を比較 すると 23 年度斜面覆砂区(水深 5m) < 23 年度斜面覆 砂区(水深 7m) < 21 年度斜面覆砂区< 22 年度斜面覆 砂区<斜面対照区< 23 年度斜面覆砂区(水深 10m)で あった。

水深 10m 区以外の全覆砂区で対照区より低かったが, 22 年度斜面覆砂区,23 年度斜面覆砂区(水深 10m)及 び対照区でタイラギの生息に適するとされる基準 30 % 以上の値を示した月があった。

② 5~10cm 層の泥分率

平均泥分率は 5.0 ~ 20.8 % であり, 各調査点を比較す ると 23 年度斜面覆砂区 (水深 7 m) = 23 年度斜面覆砂 区 (水深 5 m) < 22 年度斜面覆砂区 < 21 年度斜面覆砂 区 < 23 年度斜面覆砂区 (水深 10 m) <斜面対照区であ った。

23 年度斜面覆砂区(水深 10m)及び斜面対照区で 30 %以上の値を示した月があった。

③ 10~15cm 層の泥分率

平均泥分率は 2.7 ~ 16.6 % あり, 各調査点を比較する

と 23 年度斜面覆砂区 (水深 5 m) < 23 年度斜面覆砂区 (水深 7 m) < 21 年度斜面覆砂区 < 22 年度斜面覆砂区 < 23 年度斜面覆砂区 (水深 10 m) <斜面対照区であっ た。

全覆砂区で対照区と比較し低く,23年度斜面覆砂区 (水深10m)で30%以上の値を示した月があった。

表4 各調査点の泥分率(%)

調査点	測定層	平均	最小	最大
	0~5cm層	19.9	12.6	28.1
21年度斜面覆砂区	5~10cm層	10.8	5.6	20.0
	10~15cm層	6.8	2.1	25.5
	0~5cm層	23.2	7.8	51.2
22年度斜面覆砂区	5~10cm層	9.6	2.3	22.6
	10~15cm層	7.4	2.9	23.7
	0~5cm層	12.5	4.2	17.7
23年度斜面覆砂区(水深7m)	5~10cm層	5.0	2.4	17.2
	10~15cm層	3.3	1.6	12.0
	0~5cm層	10.2	6.5	20.2
23年度斜面覆砂区(水深 5 m)	5~10cm層	5.0	1.9	9.4
	10~15cm層	2.7	1.4	4.5
	0~5cm層	27.7	13.9	81.9
23年度斜面覆砂区(水深10m)	5~10cm層	17.6	5.0	44.2
	10~15cm層	14.5	2.2	48.1
	0~5cm層	25.2	9.5	56.1
斜面対照区(水深7m)	5~10cm層	20.8	12.9	48.2
	10~15cm層	16.6	13.4	27.3

※タイラギの生息に適するとされる泥分率は 30 %未満

図 12 0~5cm 層の泥分率の推移

図 13 5~10 cm層の泥分率の推移

図 14 10~15 cm層の泥分率の推移

4) 中央粒径值

調査点別の中央粒径値の平均値,最小値,最大値を表4 に,各調査点における中央粒径値の測定層別 (0~5,5~10,10~15cm層)の推移を図15~17に示した。

① 0~5 cm層の中央粒径値

平均中央粒径値は 1.0 ~ 2.5 であった。22 年度斜面覆 砂区,23 年度斜面覆砂区(10m)及び対照区で一時的に 中央粒径値3以上の月が確認されたが、それ以外の覆砂 区は対照区より低く、タイラギの生息に適するとされる 3 未満の値で安定して推移した。

② 5~10 cm層の中央粒径値

平均中央粒径値は 0.5 ~ 2.4 であった。23 年度斜面覆 砂区(10m)及び対照区で一時的に中央粒径値 3 以上の 月が確認されたが, 概ね 3 未満の値で推移した。また、 覆砂区では対照区と比較して低い値で推移した。

③ 10~15 cm層の中央粒径値

平均中央粒径値は 0.4 ~ 2.1 であった。全調査点で 3 以上の高い値はみられず, 覆砂区では水深 10m 区以外 は,対照区と比較し概ね低い値で推移した。

調査点	測定層	平均	最小	最大
	0~5cm層	1.6	1.1	2.2
21年度斜面覆砂区	5~10cm層	0.8	0.1	1.5
	10~15cm層	0.4	-0.6	0.9
	0~5cm層	1.7	0.6	4.0
22年度斜面覆砂区	5~10cm層	1.0	0.3	2.4
	10~15cm層	0.9	0.2	2.2
	0~5cm層	1.0	0.6	1.9
23年度斜面覆砂区(水深7m)	5~10cm層	0.5	0.0	1.8
	10~15cm層	0.8	0.3	1.3
	0~5cm層	1.0	0.5	1.4
23年度斜面覆砂区(水深5m)	5~10cm層	0.8	0.3	1.1
	10~15cm層	0.5	0.1	1.1
	0~5cm層	1.9	1.3	4.0
23年度斜面覆砂区(水深10m)	5~10cm層	1.7	1.2	3.0
	10~15cm層	1.7	0.8	2.9
	0~5cm層	2.5	2.1	4.0
斜面対照区(水深7m)	5~10cm層	2.4	2.0	3.9
	10~15cm層	2.1	2.0	2.4

表5 各調査点の中央粒径値(φ)

※タイラギの生息に適するとされる中央粒径値は3未満 ※※ φ 4以上は4として集計

図 17 10~15 cm層中央粒径値の推移

5) 硫化水素濃度

調査点別の硫化水素濃度の平均値,最小値,最大値を 表 5 に,各調査点における硫化水素濃度の測定層別 (0~5,5~10,10~15cm 層)の推移を図 18 ~ 20 に示した。 硫化水素濃度は,覆砂区と対照区ともにタイラギの生 息に悪影響を与えるとされる 3 mg/l より,かなり低い値 で推移した。

衣 0 谷讷宜息(の価化小糸	侲皮	(mg/I)	
調査点	測定層	平均	最小	最大
	0~5cm層	0.01	0.01	0.01
21年度斜面覆砂区	5~10cm層	0.00	0.00	0.02
	10~15cm層	0.00	0.00	0.00
	0~5cm層	0.01	0.01	0.01
22年度斜面覆砂区	5~10cm層	0.00	0.00	0.03
	10~15cm層	0.00	0.00	0.00
	0~5cm層	0.00	0.00	0.00
23年度斜面覆砂区(水深7m)	5~10cm層	0.00	0.00	0.02
	10~15cm層	0.00	0.00	0.00
	0~5cm層	0.00	0.00	0.00
23年度斜面覆砂区(水深5m)	5~10cm層	0.00	0.00	0.00
	10~15cm層	0.00	0.00	0.00
	0~5cm層	0.01	0.00	0.08
23年度斜面覆砂区(水深10m)	5~10cm層	0.00	0.00	0.00
	10~15cm層	0.01	0.00	0.06
	0~5cm層	0.01	0.00	0.08
斜面対照区(水深7m)	5~10cm層	0.01	0.00	0.12
	10~15cm層	0.00	0.00	0.04

表 6 各調査点の硫化水素濃度(mg

※タイラギの生息に適する硫化水素濃度は 3mg/l 未満

図 19 5~10cm 層硫化水素濃度の推移

(3) 生物調査

1)タイラギ浮遊幼生調査

調査点別のタイラギ浮遊幼生の出現数(個体/m³)を 表 6 に示した。タイラギ浮遊幼生の平均出現数は, St.9 (210 号南側)で最も高く 2.1 個体数/m³であった。

タイラギ浮遊幼生は、7月17日にSt.5(竹ハゼ南)で6.0 個体数/m^{*}, St.9(210号南側)で36.9 個体数/m^{*}, 10月4 日にSt.3(三池島)で7.0 個体数/m^{*}確認されたが、出現数 は非常に少なかった。

表7 各調査点の浮遊幼生の出現数(個体/m³)

	地点	4月3日	5月16日	5月31日	6月17日	6月27日	7月9日	(月1)日	8月2日	8月13日	8月26日
St.1	208号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.2	ひゃっかん	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.3	三池島	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.4	峰の洲	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.5	竹ハゼ南	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0
St.6	大牟田北	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.7	24号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.8	七つハゼ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.9	210号南側	0.0	0.0	0.0	0.0	0.0	0.0	36.9	0.0	0.0	0.0
St.10	31号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	地点	9月5日	9月13日	10月4日	10月12日	10月27日	11月3日	11月10日	11月26日	平均	1
St.1	地点 208号	9月5日 0.0	9月13日 0.0	10月4日 0.0	10月12日 0.0	10月27日 0.0	<u>11月3日</u> 0.0	11月10日 0.0	11月26日 0.0	平均 0.0	
St.1 St.2	地点 208号 ひゃっかん	9月5日 0.0 0.0	9月13日 0.0 0.0	10月4日 0.0 0.0	10月12日 0.0 0.0	10月27日 0.0 0.0	11月3日 0.0 0.0	11月10日 0.0 0.0	11月26日 0.0 0.0	平均 0.0 0.0	
St.1 St.2 St.3	地点 208号 ひゃっかん 三池島	9月5日 0.0 0.0 0.0	9月13日 0.0 0.0 0.0	10月4日 0.0 0.0 7.0	10月12日 0.0 0.0 0.0	10月27日 0.0 0.0 0.0	11月3日 0.0 0.0 0.0	11月10日 0.0 0.0 0.0	11月26日 0.0 0.0 0.0	平均 0.0 0.0 0.4	
St.1 St.2 St.3 St.4	地点 208号 ひゃっかん 三池島 峰の洲	9月5日 0.0 0.0 0.0 0.0	9月13日 0.0 0.0 0.0 0.0	10月4日 0.0 0.0 7.0 0.0	10月12日 0.0 0.0 0.0 0.0	10月27日 0.0 0.0 0.0 0.0	11月3日 0.0 0.0 0.0 0.0	11月10日 0.0 0.0 0.0 0.0	11月26日 0.0 0.0 0.0 0.0	平均 0.0 0.0 0.4 0.0	
St.1 St.2 St.3 St.4 St.5	地点 208号 ひゃっかん 三池島 峰の洲 竹ハゼ南	9月5日 0.0 0.0 0.0 0.0 0.0	9月13日 0.0 0.0 0.0 0.0 0.0	10月4日 0.0 0.0 7.0 0.0 0.0	10月12日 0.0 0.0 0.0 0.0 0.0 0.0	10月27日 0.0 0.0 0.0 0.0 0.0	11月3日 0.0 0.0 0.0 0.0 0.0	11月10日 0.0 0.0 0.0 0.0 0.0	11月26日 0.0 0.0 0.0 0.0 0.0 0.0	平均 0.0 0.4 0.4 0.3	
St.1 St.2 St.3 St.4 St.5 St.6	地点 208号 ひゃっかん 三池島 峰の洲 竹ハゼ南 大牟田北	9月5日 0.0 0.0 0.0 0.0 0.0 0.0	9月13日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月4日 0.0 0.0 7.0 0.0 0.0 0.0 0.0	10月12日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月27日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月3日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月10日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月26日 0.0 0.0 0.0 0.0 0.0 0.0 0.0	平均 0.0 0.4 0.4 0.0 0.3 0.0	
St.1 St.2 St.3 St.4 St.5 St.6 St.7	地点 208号 ひゃっかん 三池島 峰の洲 竹ハゼ南 大牟田北 24号	9月5日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9月13日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月4日 0.0 7.0 0.0 0.0 0.0 0.0 0.0	10月12日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月27日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月3日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月10日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月26日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	平均 0.0 0.4 0.3 0.3 0.0 0.0	
St.1 St.2 St.3 St.4 St.5 St.6 St.7 St.8	地点 208号 ひゃっかん 三池の洲 竹ハゼ南 大牟田北 24号 七つハゼ	9月5日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9月13日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月4日 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0	10月12日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月27日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月3日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月10日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11月26日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	平均 0.0 0.4 0.3 0.0 0.0 0.0 0.0	
St.1 St.2 St.3 St.4 St.5 St.6 St.7 St.8 St.9	地点 208号 ひゃっかん 三池島 峰の洲 竹ハゼ南 大牟田北 24号 七つハゼ 210号南側	9月5日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9月13日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10月4日 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10月12日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10月27日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11月3日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11月10日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	11月26日 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	平均 0.0 0.4 0.4 0.3 0.0 0.0 0.0 0.0 2.1	

2) タイラギ生息状況調査

④タイラギ初期稚貝生息密度

海底表層で採取されたタイラギ初期稚貝(殻長1mm以上)の調査毎の生息密度を表7に示した。

タイラギ初期稚貝は,8月16日,9月12日に確認さ れた後,10月11日には確認されなかった。このことか ら平成24年級群のタイラギ稚貝は8月から9月にかけ て着底があったと考えられた。

平均生息密度は, 0.25 ~ 1.5 個体/m²と平成 23 年級群 の 8 ~ 32 個体/m²と比較し, 非常に少なかった。

対照区, 21, 22 年度斜面覆砂区及び 23 年度斜面覆砂 区 (水深 10 m), では, 初期稚貝は見られなかった。

表8 タイラギ初期稚貝の生息密度

初期稚貝生息密度(個体/ m)	7月16日	8月16日	9月12日	10月11日	平均
21年度斜面覆砂区	0	0	0	0	0
22年度斜面覆砂区	0	0	-	0	0
23年度斜面覆砂区(水深7m)	0	3	3	0	1.5
23年度斜面覆砂区(水深 5 m)	0	1	0	0	0.25
23年度斜面覆砂区(水深10m)	0	0	0	0	0
斜面対照区(水深7m)	0	1	0	0	0.25

②タイラギ生息密度

i 24 年級群タイラギ生息密度

調査点別の 24 年級群タイラギ生息密度の平均値,最 小値,最大値を表 8 に,生息密度の推移を図 21 に示した。

24 年級群タイラギは,水深 5m 及び 7m の海域における 21 ~ 23 年度斜面覆砂区で対照区や水深 10m の海域 と比較して高い生息密度で推移していたが,25 年 5 月 から徐々に減少し,8 月以降は全調査点で 0.1 個体/㎡以 下となった。

ii 25 年級群タイラギ生息密度

調査点別の 25 年級群タイラギ生息密度の平均値,最 小値,最大値を表 9 に,生息密度の推移を図 22 に示した。

25 年級群タイラギの平均生息密度は,水深 7 mの 21 年度斜面覆砂区で 0.7 個体/㎡,次いで 23 年度斜面覆砂 区の水深 10m, 7m, 5m の順で,最も少なかったのが対 照区の 0.1 個体/㎡であった。水深 10m 区では 9 月に 2.9 個体/㎡と比較的多い稚貝が確認されたが,10 月以降は 0.2 個体/㎡以下に減少した。

全調査点で25年級群タイラギの生息密度は1個体/m² 以下で推移し、非常に少なかった。

表9 24 年級群タイラギ生息密度(個体/m²)

調査点	平均	最小	最大
21年度斜面覆砂区	0.2	0.0	0.6
22年度斜面覆砂区	0.8	0.0	2.0
23年度斜面覆砂区(水深7m)	0.5	0.0	2.8
23年度斜面覆砂区(水深 5 m)	0.3	0.0	0.9
23年度斜面覆砂区(水深10m)	0.1	0.0	0.9
斜面対照区(水深7m)	0.0	0.0	0.2

表 10 各調査点の 25 年級群タイラギ生息密度

調査点	平均	最小	最大
21年度斜面覆砂区	0.7	0.1	2.1
23年度斜面覆砂区(水深7m)	0.4	0.0	1.4
23年度斜面覆砂区(水深 5 m)	0.2	0.0	0.4
23年度斜面覆砂区(水深10m)	0.5	0.0	2.9
斜面対照区(水深7m)	0.1	0.0	0.2

※着底稚貝が確認された8月~3月のデータを使用

③タイラギ殻長

i 24 年級群タイラギ殼長

調査点別の24年級群タイラギ殻長の平均値,最小値, 最大値を表10に, 殻長の推移を図23に示した。

24 年級群の平均殻長は, 57.6 ~ 93.5 mmであった。

表 11 各調査点の 24 年級群タイラギ殻長(mm)

調査点	平均	最小	最大
21年度斜面覆砂区	77.6	53.4	131.8
22年度斜面覆砂区	57.6	49.5	62.1
23年度斜面覆砂区(水深7m)	64.5	56.3	83.1
23年度斜面覆砂区(水深 5 m)	93.5	52.1	166.3
23年度斜面覆砂区(水深10m)	92.3	49.4	164.1
斜面対照区(水深7m)	67.6	39.9	93.3

ii 25年級群タイラギ殼長

調査点別の 25 年級群タイラギ殻長の平均値,最小値, 最大値を表 11 に, 殻長の推移を図 24 に示した。 25 年級群タイラギは8月に30m程度で確認された群と,12
 1月に30m程度で確認された群の2群が確認された。
 分布量が少なく各試験区毎の比較はできなかった。

表 12 各調査点の 25 年級群タイラギ殻長(mm)

調査点	平均	最小	最大
21年度斜面覆砂区	54.1	33.2	86.9
22年度斜面覆砂区	39.2	39.2	39.2
23年度斜面覆砂区(水深7m)	71.5	57.1	87.7
23年度斜面覆砂区(水深 5 m)	43.6	32.3	55.4
23年度斜面覆砂区(水深10m)	70.0	59.4	92.6
斜面対昭区(水深7m)	49 0	32 1	66 0

図 24 25 年級群タイラギ平均殻長の推移

3)底生生物

各調査点における底生生物の調査毎の種類数を表 12, 個体数を表 13, 湿重量を表 14 に示した。

1g未満の種類数

平均種類数は、21 年度斜面覆砂区、23 年度斜面覆砂 の水深 5 m、7 m区で、40 種以上であり、対照区で 37.5 種より多かった。一方、22 年度斜面覆砂区では、26.3 種、23 年度斜面覆砂の水深 10m 区では 32.3 種と対照区 より少なかった。

②1g以上の種類数

平均種類数は,21,22 年度斜面覆砂区,23 年度斜面 覆砂区の水深 5m,7m 区では対照区以上となり,23 年 度斜面覆砂の水深 10m 区では対照区より少なかった。

③1g未満の個体数と湿重量

平均の個体数と湿重量は 23 年度斜面覆砂区(水深 10 m)を除き, 覆砂区の方が対照区より多かった。

④1g以上の個体数と湿重量

平均の個体数と湿重量は、1 g未満と同様に 23 年度 斜面覆砂区(水深 10 m)を除き、覆砂区の方が対照区 より多かった。

⑤大型個体

1 gを超える大型個体の主な種類は、サルボウ、コケ ガラス等の二枚貝類であった。

表13 底生生物の種類数

	5月2日	8月16日	12月25日	2月6日	平均
21年度斜面覆砂区	44 (2)	31 (2)	37 (6)	48 (2)	40.0 (3.0)
22年度斜面覆砂区	35 (3)	17 (1)		27 (1)	26.3 (1.7)
23年度斜面覆砂区(水深7m)	43 (2)	40 (0)	33 (0)	54 (2)	42.5 (1.0)
23年度斜面覆砂区(水深5m)	45 (3)	56 (1)	25 (1)	50 (4)	44.0 (2.3)
23年度斜面覆砂区(水深10m)	43 (0)	37 (1)	20 (0)	29 (0)	32.3 (0.3)
斜面対照区(水深7m)	46 (3)	32 (0)	29 (0)	43 (1)	37.5 (1.0)

※カッコ内は 1gを超える大型個体の種類数

表 14 底生生物の個体数

	5月2	2日	8月	16日	12)	月25日	2)	月6日	<u> </u>	Z均
21年度斜面覆砂区	2512 ((176)	1248	(32)	512	(108)	1264	(32)	1384.0	(87.0)
22年度斜面覆砂区	2096 ((432)	220	(4)	—	—	1328	(32)	1214.7	(156.0)
23年度斜面覆砂区(水深7m)	4144 ((8)	1264	(0)	424	(0)	1420	(16)	1813.0	(6.0)
23年度斜面覆砂区(水深 5 m)	4368 ((12)	3512	*	180	(4)	756	(20)	2204.0	(12.0)
23年度斜面覆砂区(水深10m)	1528 ((0)	680	(4)	316	(0)	392	(0)	729.0	(1.0)
斜面対照区(水深7m)	1496 ((12)	344	(0)	552	(0)	828	(4)	805.0	(4.0)

※8月16日の水深5m区は、海綿類のため計測不能

※カッコ内は 1g を超える大型個体の数

表15 底生生物の湿重量

	5月	2日	8月	16日	12)	月25日	2)	月6日	<u>ī</u>	平均
21年度斜面覆砂区	185.92	(729)	67.2	(395)	33.2	(320)	34.72	(83)	80.3	(382.1)
22年度斜面覆砂区	134.08	(2007)	8.32	(7)	—	—	85.76	(68)	76.1	(693.7)
23年度斜面覆砂区(水深7m)	87.84	(23)	41.32	(0)	15.96	(0)	36.28	(87)	45.4	(27.5)
23年度斜面覆砂区(水深5m)	92.4	(173)	99.28	(6)	6.44	(21)	26.16	(74)	56.1	(68.5)
23年度斜面覆砂区(水深10m)	27.12	(0)	11.52	(5)	7.12	(0)	9.2	(0)	13.7	(1.4)
斜面対照区(水深7m)	15.6	(16)	21.56	(0)	21.04	(0)	11.84	(8)	17.5	(6.1)

※カッコ内は 1g を超える大型個体の湿重量

(4)深浅測量調査

深浅測量調査における調査ラインを図 25 に, 各ライン毎の平成 24 年度, 25 年度の測量結果を図 26 ~ 29 に示した。

平成 24, 25 年度に深浅測量を行った結果,最大で較

差 0.3m の箇所が 2 カ所確認できた。しかし,平均較差 が 5cm 未満であることを考慮すれば,前年度からの海 底の水深変化はほとんど無いものと考えられた。

図 25 深浅測量ライン (※①~④は測量範囲の四隅)

図 26 縦断面図 No.1

図 27 縦断面図 No.2

図 28 縦断面図 No.3

図 29 縦断面図 No.4

2. 沖合域の天然優良漁場調査

(1) タイラギ生息状況調査

1) 初期稚貝生息密度

優良な天然漁場である竹ハゼ南漁場において海底表層 で確認されたタイラギ初期稚貝(殻長1mm以上)の調査 毎の生息密度を表15に示した。

タイラギ初期稚貝は,竹ハゼ南漁場で確認できなかった。

2) 生息密度

竹ハゼ南漁場における 24 年級群及び 25 年級群タイラ ギの生息密度の平均値,最小値,最大値を表 16 に,生 息密度の推移を図 30 に示した。

竹ハゼ南漁場における 24 年級群の生息密度の平均は 0.2 個体/㎡であり、25 年級群は 2.0 個体/㎡であった。

24 年級群は、4 月の調査時に 0.8 個体/m^{*}で生息してい たが、その後徐々に減少し、3 月の調査時には、0.1 個 体/m^{*}であった。

25 年級群は,10 月の調査時に最も高く,3.5 個体/㎡の密度で生息していたが,その後減少し,3 月の調査時には,0.9 個体/㎡であった。

表 16 竹ハゼ南漁場において確認された

タイラギ初期稚貝の生息密度(個体/m²)

初期稚貝生息密度(個体/㎡)	7月2日	7月31日	9月13日	10月10日	11月8日	平均
竹ハゼ南	0	0	0	0	0	0

表17 竹ハゼ南漁場における生息密度(個体/m)

- 259 -

3) 殻長

竹ハゼ南における 24 年級群及び 25 年級群タイラギの 殻長の平均値,最小値,最大値を表 17 に,平均殻長の 推移を図 31 に示した。

竹ハゼ南漁場における 24 年級群の平均殻長は 131.7mm, 25 年級群は 70.5mm であった。

24 年級群の平均殻長は、4 月に 87.7mm で、3 月には 168.1mm となった。

25 年級群の平均殻長は,最初に生息が確認された 9 月は49.7mm で,3月には86.3mm となった。

(2)底質調査

1) 浮泥堆積状況

沖合域の天然優良漁場である竹ハゼ南漁場における 浮泥堆積厚の平均値,最小値,最大値を表 18 に,浮 泥堆積厚の推移を図 32 に示した。

竹ハゼ南漁場における浮泥の平均堆積厚は,2.73mm であり,10mm以下で推移した。

表18 竹ハゼ南漁場におけるタイラギ殻長 (mm)

表 19 竹ハゼ南漁場の浮泥堆積厚(mm)

2)硫化物量

竹ハゼ南漁場における測定層別の硫化物量の平均値, 最小値,最大値を表 19 に,硫化物量の推移を図 33 に示 した。

竹ハゼ南漁場における平均硫化物量は,5~10 cm 層で最も高く 0.062mg/g 乾泥で,次いで 10~15 cm層 の 0.032mg/g 乾泥,0~5 cm層の 0.025mg/g 乾泥であっ た。また,全測定層で 0.2mg/g 乾泥以下の値で推移した。

3) 強熱減量

竹ハゼ南漁場における測定層別の強熱減量の平均値, 最小値,最大値を表 20 に,硫化物量の推移を図 34 に示 した。

竹ハゼ南漁場における平均強熱減量は, 3.6 ~ 4.2 % であり,測定層別の違いはほとんど認められなかった。

また, 強熱減量は, 調査期間を通じて全測定層で6% 以下で推移し, 概ね3層とも同様の傾向を示した。

表 20 竹ハゼ南漁場における硫化物量(mg/g 乾泥)

調査点	測定層	平均	最小	最大
	0~5cm層	0.025	0.005	0.084
竹ハゼ南漁場	5~10cm層	0.062	0.015	0.168
	10~15cm層	0.032	0.013	0.060

※ 硫化物 0.2mg/g 乾泥以上は生物の生息に不適

図 33 竹ハゼ南漁場における硫化物量の推移

表 21 竹ハゼ南漁場における強熱減量(%)

調査点	測定層	平均	最小	最大
	0~5cm層	4.2	0.9	5.9
竹ハゼ南漁場	5~10cm層	3.6	1.2	4.9
	10~15cm層	3.8	1.0	5.5

タイラギの生※息に適するとされる強熱減量は5%未満

4) 泥分率

竹ハゼ南漁場における測定層別の泥分率の平均値, 最小値,最大値を表 21 に,泥分率の推移を図 35 に示 した。

竹ハゼ南漁場における平均泥分率は,14.5 ~ 16.6 %であり,測定層別の違いはほとんど認められなかっ た。また,泥分率は,調査期間を通じて全測定層で30 %以下で推移し,概ね3層とも同様の傾向を示した。

5) 中央粒径值

竹ハゼ南漁場における測定層別の中央粒径値の平均 値,最小値,最大値を表 22 に,中央粒径値の推移を 図 36 に示した。

竹ハゼ南漁場における中央粒径値の平均は 2.1 ~ 2.4 であり、測定層別の違いはほとんど認められなかった。また、中央粒径値は、調査期間を通じて全測定 層で3以下で推移し、概ね同様の傾向を示した。

表 22 竹ハゼ南漁場における泥分率(%)

調査点	測定層	平均	最小	最大
	0~5cm層	16.6	1.5	27.0
竹ハゼ南漁場	5~10cm層	14.5	2.4	24.2
	10~15cm層	15.8	3.6	27.6

※タイラギの生息に適するとされる 泥分率は 30 %未満

表 23 竹ハゼ南漁場における中央粒径値

調査点	測定層	平均	最小	最大
	0~5cm層	2.4	1.5	2.8
竹ハゼ南漁場	5~10cm層	2.1	1.3	2.5
	10~15cm層	22	1 3	29

※タイラギの生息に適するとされる中央粒径値は3未満 ※ φ 4 以上は4 として集計

6)硫化水素濃度

竹ハゼ南漁場における測定層別の硫化水素濃度の平均 値,最小値,最大値を表 23 に,硫化水素濃度の推移 を図 37 に示した。

11 月に 5~10 cm層で硫化水素の発生が確認されたが, 硫化水素濃度 0.05mg/と, 3 mg/l より低い値であった。

3. 覆砂漁場の水質

(1)水温

各調査点の1日の平均水温の推移を図38に示した。

全調査点で1日の平均水温はほぼ同様の推移を示し,8 月 23日が 28.9℃と最も高く,2月 19日に 9.2℃と最も 低かった。調査点による水温の違いは認められなかった。

昨年度の最高水温は9月10日に記録した27.6℃であ り,昨年度より1.3℃高かった。また,昨年度の最低水 温は1月28,29日に記録した9.4℃であり,今年度の 最低水温は昨年とほぼ同様であった。

表 24 竹ハゼ南漁場における硫化水素濃度 (mg/l)

調査点	測定層	平均	最小	最大
	0~5cm層	0.00	0.00	0.00
竹ハゼ南漁場	5~10cm層	0.00	0.00	0.05
	10~15cm層	0.00	0.00	0.00

※タイラギの生息に適するとされる硫化水素濃度は 3mg/l未満

(2)潮流

各調査点の 10 分平均の流速の平均値,最小値,最大 値を表 24 に示し,流速の推移を図 39 ~ 41 に示した。

全調査点で,小潮時は流速が低下し,大潮時には増加 していた。また,流速の平均値,最大値ともに水深が浅 いほど速かった。

表 25 各調査点の流速(cm/s)

(3)酸素飽和度

各調査点の1日の平均酸素飽和度の推移を図42に示 した。酸素飽和度は全調査点で潮汐に連動した周期的な 変動を示し、大潮時に増加、小潮時に減少する傾向であ った。また、主に8月から9月にかけて40%を下回る 貧酸素が確認された。

図 42 各調査点における1日平均酸素飽和度の推移

(4) 塩分

各調査点の 10 分平均の塩分の平均値,最小値,最大 値を表 25 に示し,塩分の推移を図 43 に示した。

平均塩分は, 30.7 ~ 30.8 であり, 各調査点でほぼ同様であった。塩分の最小値は, 水深が5 mの海域で 16.4 と最も低かった。夏場は, 水深が浅いほど, 塩分の低下 がみられ, 水深が5 mの海域で6月下旬と7月中旬に一時的に塩分が20を下回った。その他の時期は全調査点 で, 塩分30前後で推移した。

表 26 各調査点の塩分

図 43 各調査点における 10 分平均塩分の推移

(5) クロロフィル蛍光値

各調査点の1日の平均クロロフィル蛍光値の平均値, 最小値,最大値を表 26 に示し,クロロフィル蛍光値の 推移を図 44 に示した。

クロロフィル蛍光値の平均値は, 2.70 ~ 3.63 μ g/1 であった。水深 5 mの海域では, 10 μ g/1以下の値で 推移した。水深 7 mの海域では, 6 月から 9 月にかけて ピークが確認され, 10 mの海域では, 7 月, 2 月及び 3 月にピークが確認された。また,全調査点で1月中旬か らクロロフィル蛍光値の値が上昇した。

表 27 各調査点のクロロフィル蛍光値(μg/1)

調査点	平均	最小	最大
23年度斜面覆砂区(水深5m)	2.70	0.11	9.05
23年度斜面覆砂区(水深7m)	3.63	0.00	21.87
23年度斜面覆砂区(水深10m)	2.88	0.00	14.60

4. 基礎生産力調査

(1) クロロフィル a 量

基礎生産力調査の調査項目のうち,植物プランクトン 量の指標となるクロロフィル a についての結果を示し た。各調査点の表層と底層におけるクロロフィル a 量の 平均値,最小値,最大値を表 27,28 に,クロロフィル a 量の推移を図 45,46 に示した。また,海域区分別の表 層と底層におけるクロロフィル a 量の推移を図 47,48 に示した。

表層におけるクロロフィル a 量の各調査点の平均値 は、5.44 ~ 8.67 μ g/1 であった。表層のクロロフィル a 量は、7 月~8 月にかけて最大値となり、全調査点でほ ぼ同様の推移を示した。底層におけるクロロフィル a 量 の各調査点の平均値は、3.00 ~ 6.82 μ g/1 であった。 底層のクロロフィル a 量は、表層と同様に7月~8月に かけて最大値となった。

海域別の比較では、表層のクロロフィル a 量ついて、 干潟域:柳川沖では7月に、干潟域:大牟田沖、干潟縁 辺部、沖合域では8月に最大値となり、特に、干潟縁辺 部、沖合域で高い値を示した。底層は7月~8月に最大 値となったが、大きな変動は見られなかった。

※海域区分は以下のとおり

干潟域:柳川沖(208号,ひゃっかん,24号,七つハゼ),
 大牟田沖(43号,41号),
 干潟縁辺部:210号,31号

沖合域:三池島,峰の洲,竹ハゼ南,大牟田北

表 28 表層のクロロフィル a 量(µg/1)

			-
	平均值	最小値	最大値
208号	5.96	0.73	26.80
ひゃっかん	6.67	1.10	25.10
三池島	8.67	0.32	66.40
峰の州	7.23	0.53	43.20
竹ハゼ南	6.05	1.02	37.30
大牟田北	5.44	0.69	21.50
24号	6.81	0.99	27.20
ななつはぜ	6.56	0.34	25.40
210号	7.14	1.03	27.40
31号	7.18	0.53	47.80
43号	6.16	0.47	14.20
41号	7 27	0.67	26 90

表 29 底層のクロロフィル a 量(µg/1)

	平均値	最小値	最大値
208号	5.70	1.65	12.80
ひゃっかん	4.56	1.25	8.26
三池島	3.97	0.56	9.84
峰の州	3.00	0.91	9.35
竹ハゼ南	3.31	1.37	8.19
大牟田北	4.15	0.92	18.30
24号	6.82	1.10	24.80
ななつはぜ	4.50	0.73	9.45
210号	5.10	1.62	12.80
31号	4.16	0.82	10.70
43号	5.45	1.46	14.30
41号	6.03	0 70	14 80

図45 表層のクロロフィルa量の推移

図 48 底層におけるクロロフィル a 量の推移 (海域区分別)

(2) プランクトン組成

年間を通じての植物プランクトン組成を図 49 に示した。また,年間を通じての植物プランクトンの優占上位4種の経時変化を図 50 に示した。

植物プランクトンの優占順位は Eucampia zodiacus, Chaetoceros debile, Rhizosolenia setigera, Skeletonema costatum の順であった。

Eucampia zodiacus は 1 月 31 日以降に発生量が急増し, 2 月 21 日, 28 日には細胞密度はそれぞれ 710.6cells/ml, 477.5cells/ml であった。

Chaetoceros debile は 12 月 3 日と 1 月 31 日に特に多く, 細胞密度はそれぞれ 51.2cells/ml, 171.7cells/ml であった。

*Rhizosolenia setigera*は1月24日と31日に発生量が急増し、細胞密度はそれぞれ 33.2cells/ml, 102.6cells/ml であった。

Skeletonema costatum はすべての調査日でみられ、4月 11日、7月9日に多く、細胞密度はそれぞれ 12.3cells/ml、 40.8cells/ml であった。

500,000 2月21日 450,000 400,000 350,000 300,000 250.000 Chaetoceros debile 200,000 Rhizosolenia setigen 150,000 100,000 50.000 4/11 5/95 5/16 6/11 7/9 8/8 8/26 9/5 9/5 11/5 11/5 11/5 11/5 11/24 11/24 11/24 12/28 12/28 図 50 主な出現種の出現状況 (植物プランクトン上位4種)

年間を通じての動物プランクトン組成を図 51 に示した。また、年間を通じての動物 プランクトンの優占上位4種の経時変化を図 52 に示した。

動物プランクトンの優占順位は Copepodite of *Oithona*, *Microsetella norvegica*, *Oithona davisae*, Nauplius of *COPEPODA*の順であった。

Copepodite of *Oithona* は 7月 9日, 8月 8日に特に多く, それぞれ 2,429,937 個体/m³ 1,026,985 個体/m³であった。

*Microsetella norvegica*は10月4日と11月5日に特に多く,細胞密度はそれぞれ3,081,922個体/m³,1,417,409個体/m³であった。

*Oithona davisae*は5月から8月に多く、特に7月9日 に850,837個体/m³と多かった。

Nauplius of COPEPODA は特に多く出現した日はなかったが、すべての調査日で多かった。

図 51 動物プランクトン組成

(3) プランクトン沈澱量

各調査点のプランクトン沈澱量の推移を図 53 に示した。

プランクトン沈澱量は,7月9日,10月4日,1月下 旬以降に多かった。

7月9日にプランクトン沈澱量が多く,特に Skeletonema costatum や動物プランクトンの Copepodite of Oithona が多かった。

10月4日にプランクトン沈澱量が多く,特に動物プ ランクトンの *Microsetella norvegica* が多かった。

1 月下旬以降にプランクトン沈澱量が多く,特に Eucampia zodiacus, Chaetoceros debile, Rhizosolenia setigera の3種が多かった。

図 53 各調査点のプランクトン沈澱量の推移

(4) 栄養塩

基礎生産力調査の水質分析項目のうち, DIN, PO4, SiO2 についての結果を示した。各調査点の表層と底層におけ る DIN, PO4, SiO2 の平均値, 最小値, 最大値を表 29 ~ 34 に, DIN, PO4, SiO2 の推移を図 54 ~ 59 に示した。ま た, 海域区分別の表層と底層における DIN, PO4, SiO2 の推移を図 60 ~ 65 に示した。

各調査点における平均値は,表層で DIN: $6.62 \sim 16.99$ μ mol/1, PO4: $0.59 \sim 1.07 \mu$ mol/1, SiO2: $36.99 \sim$ 76.56 μ mol/1, 底層で DIN: $6.23 \sim 11.73 \mu$ mol/1, PO4 : $0.62 \sim 0.95 \mu$ mol/1, SiO2: $31.13 \sim 55.21 \mu$ mol/1 で あった。

表層の DIN は, 8月~9月にかけて最大値となり,干 潟域,干潟縁辺部,沖合域でそれぞれ同様に推移し,底 層は、4月~5月を除けば、全域でほぼ同様に推移した。

PO4 は表層,底層ともに,9月に最大値となり,全域 でほぼ同様に推移した。

SiO₂は,表層は4月と8月を,底層は4月を除けば, 全域でほぼ同様に推移した。

表 30 表層における DIN(µ mol/1)

	半均値	最小値	最大値
208号	16.73	0.00	47.75
ひゃっかん	9.52	0.00	25.38
三池島	7.53	0.00	27.88
峰の州	8.23	0.00	29.88
竹ハゼ南	6.62	0.00	25.42
大牟田北	6.70	0.00	23.59
24号	16.99	0.00	72.81
ななつはぜ	15.50	0.00	41.56
210号	9.23	0.00	27.17
31号	7.23	0.00	23.72
43号	11.87	0.00	33.38
41号	16.87	0.00	35.23

表 31 底層における DIN(μ mol/1)

	平均值	最小値	最大値
208号	11.73	0.00	34.86
ひゃっかん	8.46	0.00	23.38
三池島	7.08	0.00	17.32
峰の州	6.81	0.00	14.59
竹ハゼ南	6.29	0.00	16.38
大牟田北	6.23	0.00	17.18
24号	9.69	0.00	22.78
ななつはぜ	9.65	0.00	21.20
210号	7.92	0.00	18.46
31号	6.58	0.00	17.36
43号	9.61	0.00	21.40
41号	11.36	0.00	29.10

表 32 表層における PO₄(µ mol/1)

	平均值	最小値	最大値
208号	1.04	0.04	2.20
ひゃっかん	0.78	0.03	2.32
三池島	0.69	0.00	2.26
峰の州	0.75	0.00	2.38
竹ハゼ南	0.62	0.00	2.23
大牟田北	0.59	0.00	2.17
24号	0.88	0.00	2.49
ななつはぜ	1.07	0.00	2.39
210号	0.78	0.00	2.37
31号	0.64	0.00	2.28
43号	0.70	0.00	1.90
41号	1.01	0.00	2.38

	平均值	最小値	最大値
208号	0.95	0.06	2.14
ひゃっかん	0.78	0.03	1.97
三池島	0.73	0.07	1.77
峰の州	0.71	0.01	1.68
竹ハゼ南	0.65	0.02	1.30
大牟田北	0.62	0.04	1.34
24号	0.77	0.00	1.85
ななつはぜ	0.87	0.01	2.14
210号	0.80	0.01	1.82
31号	0.65	0.01	1.41
43号	0.76	0.00	1.87
41号	0.85	0.00	2.25

表 33 底層における PO₄(µ mol/1)

表 34 表層における SiO₂(µ mol/1)

	平均值	最小値	最大値
208号	76.56	1.60	216.95
ひゃっかん	48.26	1.87	93.97
三池島	45.24	0.52	103.13
峰の州	46.99	0.30	120.68
竹ハゼ南	38.15	0.22	99.40
大牟田北	36.99	0.01	89.78
24号	64.81	0.00	183.14
ななつはぜ	65.83	0.77	139.04
210号	50.91	3.32	100.79
31号	39.77	0.00	91.09
43号	47.66	0.20	98.63
41号	60.35	2.09	113.73

表 35 底層における SiO₂(µ mol/1)

	平均值	最小値	最大値
208号	55.21	1.03	114.83
ひゃっかん	40.72	0.64	71.47
三池島	37.11	0.07	62.14
峰の州	36.04	0.20	67.00
竹ハゼ南	31.63	0.01	53.64
大牟田北	31.13	0.00	54.44
24号	46.89	0.61	84.30
ななつはぜ	44.44	0.00	80.45
210号	41.06	0.91	64.35
31号	33.81	0.00	59.79
43号	43.59	0.00	74.41
41号	49,43	1.49	91.51

図 55 各調査点の底層における DIN の推移

図 56 各調査点の表層における PO4 の推移

図 57 各調査点の底層における PO4 の推移

図 58 各調査点の表層における SiO2の推移

図 59 各調査点の底層における SiO2 の推移

図 60 表層における DIN の推移(海域区分別)

図 61 底層における DIN の推移(海域区分別)

図 62 表層における PO4 の推移(海域区分別)

図 63 底層における PO4 の推移(海域区分別)

図 64 表層における SiO2 の推移(海域区分別)

図 65 底層における SiO2 の推移(海域区分別)

5. 干潟域から沖合域にかけての底質調査

底質調査概況

浮泥堆積厚は,一年を通じて概ね lcm 未満であり,10 月,11月を除くと平均値は 0.5cm 以下であった。

硫化物量は,一年を通じて 0.01mg/g 乾泥未満~ 0.84mg/g 乾泥の範囲にあり,平均値は 0.20mg/g 乾泥であった。地点毎の平均値をみると,調査地点西部(St.10,11) で 0.37 ~ 0.39mg/g 乾泥と高く,筑後川河口沖(St.1)と矢 部川河口沖(St.3) で 0.06 ~ 0.09mg/g 乾泥と低かった。

強熱減量は、一年を通じて 1.2 ~ 21.3 %の範囲にあり、 平均値は 6.8 %であった。平均値をみると、塩塚川河口 (St.2) と調査地点西部(St.10, 11)で 9 ~ 11 %程度と高 く、矢部川河口沖(St.3)で 2.5 %と低かった。

泥分率は、一年を通じて 1.7 ~ 98.0 %の範囲にあり、 平均値は 53 %であった。地点毎の平均値をみると、塩 塚川河口沖(St.2)と調査地点西部(St.10, 11)で 85 ~ 91 %と高く、矢部川河口沖(St.3)と大牟田市沖(St.6,8)で 11 ~ 28 %と低かった。

中央粒径値は,一年を通じて 0.8 ~ 7.7 の範囲にあり, 平均値は 3.8 であった。平均値をみると, St.3 が中粒砂, St.8 が細粒砂, St.1, St.5 及び St.9 が極細粒砂, St.2, St.4, St.7, St.10 及び St.11 がシルトであった。

6. 遺伝子解析

(1)解析方法

有明海,豊前海及び筑前海産タイラギ集団の遺伝距離 を比較するため,表35に示す13種のEST配列を解析に用 いた。EST配列は有明海(5個体),豊前海(5個体)及 び筑前海(4個体)で採集したタイラギの閉殻筋からtot al-RNAを抽出,等量混合後cDNAを合成し,次世代シーケ ンサーで塩基配列を解読した。その後,de novo assemb lyを行い,contig配列を得た。得られたcontig配列の中 で,集団間で塩基配列が97%以上の相同性を持ち,かつ 相同配列が1種類のみである13遺伝子を選出して集団内 の塩基多様度及び集団間の遺伝的分化を推定した。

表 3	6 解	析に使	用し	た	EST	配列
-----	-----	-----	----	---	-----	----

Seq name	length	Description(BLASTX best hit)	E value
1	1965	hypothetical protein CGI_10009847 [Crassostrea gigas]	7.00E-17
2	2393	troponin-I, partial [Pinctada fucata]	4.00E-27
3	1767	PREDICTED: elongation factor 1-alpha-like isoform X1 [Aplysia californica]	0.0
4	1922	arginine kinase [Crassostrea gigas]	2.00E-159
5	925	Troponin T, skeletal muscle [Crassostrea gigas]	9.00E-73
6	1294	Transgelin-2 [Crassostrea gigas]	2.00E-71
7	2329	PREDICTED: trithorax group protein osa-like [Aplysia californica]	5.00E-33
8	1870	cytochrome c oxidase subunit I (mitochondrion) [Atrina pectinata]	0.0
9	2220	Troponin C [Crassostrea gigas]	8.00E-80
10	1302	Y-box factor homolog [Aplysia californica]	1.00E-49
11	1119	transcription factor containing NAC and TS-N domains, putative [Ixodes scapularis]	3.00E-74
12	998	mitochondrial ATP synthase subunit 9 precursor-like protein [Haliotis diversicolor]	2.00E-42
13	2071	PREDICTED: eukaryotic initiation factor 4A-II-like [Aplysia californica]	0.0

(2)解析結果

1) 有明海,豊前海及び筑前海産タイラギの集団内での 遺伝的多様性

調査した 13 の EST 配列における塩基多様度を有明 海,豊前海及び筑前海産タイラギ集団について推定し, 図 66 に示した。各集団の塩基多様度は有明海で平均 0.00130,豊前海で平均 0.00165,筑前海で平均 0.00238 で あった。また個々の EST 配列でも,2 集団間で塩基多様 度に目立った違いはみられなかった。

2) 有明海,豊前海及び筑前海産タイラギの集団内での 遺伝的分化

次に有明海,豊前海及び筑前海産タイラギの集団内 での遺伝的分化について,同様に調べた。それぞれの塩 基多様度 (Dx, Dy)と、2 集団間の平均塩基置換数 (Dxy) から、2 集団間の純塩基置換数 DA を推定した。DA は 2 集団間の遺伝的な分化の程度を表す指標の一つであり, 以下の式で推定される(根井・クマー、2006)。

$D_A = D_{XY} - (D_X + D_Y)/2$

13 種の EST 配列ごとに推定した d₄ の値及び標準偏差 を図 67 に示す。d₄ の値は有明海-豊前海集団間で平均 0.00058,有明海-筑前海集団間で平均 0.00084,豊前海-筑前海集団間で平均 0.00073 であり,各集団内の塩基多 様度と大差ない値であった。この事から3集団間の遺伝 的分化は各集団内の変動幅と比べてほとんど差がなく, 両者の間での遺伝的分化がほとんど認められないと考え られた。

考察 察

1. 斜面覆砂効果及び斃死要因の検討

平成 21,22 年度の結果から,峰の洲の斜面部におけ る覆砂域のタイラギについては、21,22 年級群ともに 生息が確認されてから当歳貝のうちは、対照区と比較し 高い生息密度を維持していた。21 年級群については、 その後、1歳貝になっても大きな斃死がなく潜水器漁業 者による試験操業では、成貝が漁獲され、覆砂域の漁場 としての活用が期待された。しかし、22 年級群につい ては、平成 23 年 6 月下旬から 8 月中旬にかけて、有明 海福岡県沖の全海域で、大量斃死が起き、これと同時期 に、峰の洲覆砂域におけるタイラギも斃死し、生息が確 認できなくなった。以上のことから、斜面部の覆砂にお けるタイラギ稚貝の着底量を増加させる効果は確認され たが、タイラギの漁獲に結びつくかどうかは、その後の 生残状況に大きく左右されることが分かった。

23 年級群については、天然漁場でほとんど生息が確認されていない状況の中、峰の洲の斜面覆砂区では、タイラギが比較的高い生息密度で生息していたため、覆砂によるタイラギ稚貝の着底量を増加させる効果があったと考えられた。特に、平成23 年度に施工した覆砂の水深5mと7mの調査点では、対照区や水深10mの調査点と比較し高い密度で推移したため、水深が5~7mと浅い海域での覆砂が有効であると考えられた。しかし、水深が浅い覆砂域においても、平成24年2月からタイラギの生息が徐々に減少し、8月以降は全調査点で確認できなくなった。24 年級群についても、同様に平成25年5月からタイラギの生息が徐々に減少し、8月以降は全調査点でほとんど確認できなくなった。

24 年級群の斃死要因の検討のため、4~8月までの水 深 7m 区の底質(浮泥堆積厚,硫化物量,強熱減量,泥 分率,中央粒径値,硫化水素濃度),水質(酸素飽和度,

塩分)のデータを用いた検証を行った。

まず,底質についての検討結果は次の通りとなった。 浮泥堆積厚はタイラギの生息に適した 10mm 以下で推移 した。硫化物量,強熱減量,泥分率,中央粒径値は,0~5cm 層,5~10cm 層,10~15cm 層ともに,概ねタイラギの生 息に適した値(硫化物量:0.1mg/g 乾泥未満,強熱減量 :5 %未満,泥分率:30 %未満,中央粒径値:3 未満) で推移した。また,二枚貝類の生息に悪影響を及ぼす硫 化水素についても,全層でほとんど発生していなかった。

次に,水質についての検討結果を述べる。酸素飽和度 については、24年級群の生息密度が減少した5月から8 月の期間中に、23年度斜面覆砂区で40%を下回る貧酸 素が一時的に確認されたが,長期間にわたる貧酸素は確 認できなかった。塩分も、一時的に20を下回る低塩分 が確認されたが、継続時間が短時間であったため、タイ ラギの生息に大きな影響を及ぼすほどではないと考えら れた。

以上のことから,底質調査や水質調査からタイラギの 斃死要因を特定することはできなかった。

2. 調査地点別の24, 25年級群の生息状況及び底質環境 からみた覆砂効果

平成 24,25 年度に,有明海福岡県沖でタイラギの浮 遊幼生調査を実施したが,干潟から沖合にかけて全調査 点で,浮遊幼生の出現量は非常に少ない結果となった。 また,峰の洲覆砂域におけるタイラギの当歳貝の生息量 は,平成 21 ~ 23 年度と比較し非常に少ない状況であっ た。

浮遊幼生の出現量が少なかったため、昨年度の調査と 比較すると着底量も少なかったが、23 年級群同様に平 成 23 年度に実施した覆砂域の水深が 5 mと 7 mの調査 点の方が対照区や水深 10 mの調査点と比較し着底稚貝 の生息密度が高く、また潜水による調査においても高い 生息密度で推移した。また、底質のうち硫化物量や泥分 率の平均値を比較すると水深が 5 mと 7 mの調査点の方 が、対照区や水深 10 mの調査点より低い値を示し、底 質環境が改善されていることが分かった。流速について は、水深が浅いほど速くなるという傾向を示した。

以上のことから、5 m~ 7 mの水深の浅い海域での斜 面部における覆砂域では、タイラギの着底量の増加効果 及び流速が速く底質環境の改善効果が高いため、水深の 浅い海域での斜面覆砂が有効であると考えられた

3. 斜面覆砂の耐久性及び効果の持続性について

平成 23 年度斜面覆砂区について, 24, 25 年度に深浅 測量を行った結果,最大で較差 0.3m の箇所が 2 カ所確 認できた。しかし,平均較差が 5cm 未満であることを 考慮すれば,前年度からの海底の水深変化はほとんどな いものと考えられた。

まとめ、今後の課題、方針

1. 斜面覆砂による効果の検証

- (1)平成 23 ~ 25 年度は天然域におけるタイラギの生息 量が少なく、覆砂によるタイラギの増産効果の把握 が困難であったため、環境面のデータ蓄積を中心に 行った。
- (2)斜面覆砂漁場では水深 5 m, 7 m域で 10 m域と比較 して流速が速く,底質及びタイラギの生息状況も良 好であったことから 7 m以浅での覆砂が有効である ことが示唆された。
- (3)タイラギの増産効果及び覆砂効果の持続性を把握す るために,現状の効果調査を26年度まで継続する必 要があると考えられた。

2. タイラギ斃死要因について

- (1)前述したとおり、平成 23 ~ 25 年度とタイラギの生
 息量が少なく、平成 24, 25 年はタイラギの潜水器漁
 業が休漁となる事態に陥った。
- (2)今まで水質や底質などの環境データを蓄積してきた が、それだけではタイラギ斃死要因の特定は困難で、 さらにタイラギの生理・生態面の把握が重要と考え られた。
- (3)生理面では、タイラギの成熟状況や活力などを調べ、 生態面では、平成24年度から始めた幼生調査、基礎 生産力(餌料環境)調査等を継続する必要があると 考えられた。
- (4) 有明海, 豊前海, 筑前海のタイラギを 13 遺伝子で EST 解析を行ったところ, 遺伝的に大きな差がみられな かった。このことから, 有明海におけるタイラギの 斃死要因が, 当該領域の遺伝的差異によるものでは ないとことが示唆された。
- (5) 今後は,底質や外敵の影響を除去した飼育ネット試験にも取り組む必要があると考えられた。