漁場環境保全対策事業

(3) 貝毒発生監視調查事業

吉田 幹英・渕上 哲・的場 達人

近年,西日本地区では二枚貝類の毒化現象が頻繁にみ られるようになり,出荷自主規制の措置を講じる件数も 増加傾向にあることから,県内産有用二枚貝類について も安全性の確保が求められている。

そこで,有明海域の福岡県地先で採捕されるアサリ,サ ルボウおよびタイラギを対象に貝毒モニタリングを実施 し,併せて貝毒原因プランクトンの動向を把握すること により,水産食品としての安全性確保を図る。

方 法

本年度の有用二枚貝類の採捕地点および貝毒原因プラ ンクトン調査定点を図1に示した。

有用二枚貝類の採捕はアサリを対象に3回(平成26年4, 5,6月),サルボウを対象に5回(平成26年9,10,11,12 月,平成27年1,3月)の計6回行った。タイラギについて は,潜水器漁業が禁漁となったため,本年度は貝毒検査 を実施しなかった。

試料は殻長及び殻付き重量の最小値と最大値を測定 し,剥き身を凍結した後,(財)食品環境検査協会福岡事業 所へ搬入し,麻痺性(PSP)貝毒について検査を委託した。 併せて,アサリは4,5月,サルボウは11月に下痢性(DSP) 貝毒についても検査を委託した。これらの検査にはマウ ス試験を用いた。

貝毒原因プランクトン調査は,計10回(平成26年4,5,6, 8,9,10,11,12月,平成27年1,3月),沿岸定点および沖合 定点の2定点で実施した。採水層は,表層および底層とし, 試水2Lを目合い10μmのナイロンメッシュで重力ろ過に より数m1に濃縮し全量を検鏡し貝毒原因プランクトンを 同定,計数した。

結果

貝毒のマウス試験検査結果を表1に示した。マウス試験の結果は、アサリ、サルボウにおいて麻痺性および下痢 性貝毒は検出されなかった。 貝毒原因プランクトン種の検鏡を実施した結果,麻痺 性貝毒原因種であるAlexandrium属, Gymnodinium属の出 現は確認されなかった。

下痢性貝毒原因種であるDinophysis属は,平成26年9, 10, 11, 12月及び平成27年1, 3月に3種(Dinophysis for tii, Dinophysis acuminata, Dinophysis caudata)の出 現が確認され,分布密度が100cells/1を超える月もあっ たが貝類の毒化は認められなかった。

Dinophysis属は,過去にも有明海で確認されているが 貝類の毒化は確認されていない。本種は西日本海域でも, 毒化した事例はないが,今後も注視していく必要がある。

麻痺·下痢	試料名	試料採取年月日	採取地点	個体数	設長	(mm)	一一般幅	(mm)	設重	(g)	むき身	検査結果
					最大	<u> </u>	<u> </u>	最小	<u> </u>	<u> </u>	総重重(g)	
麻痺	アサリ	平成26年4月15日	有明海	272	38.43	26.82	15.95	12.10	9.50	4.38	569.67	ND
下痢	アサリ	平成26年4月15日	有明海	272	38.43	26.82	15.95	12.10	9.50	4.38	569.67	ND
麻痺	アサリ	平成26年5月12日	有明海	216	38.29	26.51	18.12	12.87	12.51	4.44	588.58	ND
下痢	アサリ	平成26年5月12日	有明海	216	38.29	26.51	18.12	12.87	12.51	4.44	588.58	ND
麻痺	アサリ	平成26年6月9日	4号	514	37.59	21.57	17.42	10.25	12.30	2.30	610.81	ND
麻痺	サルボウ	平成26年9月25日	有明海	107	37.35	28.45	24.66	18.66	16.28	7.55	259.83	ND
麻痺	サルボウ	平成26年10月16日	14号	192	36.07	14.54	21.85	8.50	11.72	0.89	299.12	ND
麻痺	サルボウ	平成26年11月20日	210号	218	39.63	23.71	23.74	13.47	17.30	3.82	580.76	ND
下痢	サルボウ	平成26年11月20日	210号	218	39.63	23.71	23.74	13.47	17.30	3.82	580.76	ND
麻痺	サルボウ	平成26年12月18日	210号	211	39.10	20.54	23.22	12.76	15.52	2.77	395.77	ND
麻痺	サルボウ	平成27年1月7日	210号	341	37.93	19.91	23.19	13.08	15.45	2.80	255.34	ND
麻痺	サルボウ	平成27年3月12日	24号	100	42.75	21.47	29.00	13.18	23.46	3.14	316.70	ND

表1 貝毒検査結果

調査定点	貝毒原因種	種名	層別				平成27年						
				4月28日	5月29日	6月27日	8月25日	9月24日	10月24日	11月21日	12月22日	1月7日	3月20日
		Alexandrium catenella	表層 底層	0	0	0	0	0	0	0	0	0	0
	麻痺性貝毒	Alexandrium tamarense	表層	0	0	0	0	0	0	0	0	0	0
沿岸定点 S4 下痢性貝毒	WILLIE .	Gimnodinium catenatum	表層	0	0	0	0	0	0	0	0	0	0 0
		Dinophysis fortii	表層	0	0	0	0	0	177	0	0	0	1
	下痢性貝毒 原因種	Dinophysis acuminata	表層	0	0	0	0	450	71	318	0	2	4
		Dinophysis caudata	表層	0	0	0	0	54	4	0	0	0	
		Alexandrium catenella	表層	0	0	0	0	0	0	0	0	0	0
	麻痺性貝毒	Alexandrium tamarense	表層	0	0	0	0	0	0	0	0	0	0
油本学者		Gimnodinium catenatum	表層	0	0	0	0	0	0	0	0	0	0
川合定点 _ 17 -		Dinophysis fortii	表層	0	0	0	0	0	100	0	0	1	0
	下痢性貝毒	Dinophysis acuminata	表層	0	0	0	0	88	18	118	0	1	0
	小口性	Dinophysis caudata	表層底層	0	0	0	0	48	22	3	0	0 0	0

有明海環境改善事業

(1) タイラギ潜水器漁場改善実証事業

的場 達人・廣瀬 道宣・兒玉 昂幸・長本 篤

有明海では近年底質環境の悪化が進行していると考え られ、広い範囲で浮泥の堆積、底質中の有機物量の増加 などが疑われている。また、それにともなって底生生物 の生息にも影響を与えていると考えられる。

福岡県では浮泥の堆積等によって底質環境が悪化し, 水産生物の生息が困難になった漁場の改善手法として覆 砂事業を行い,干潟域ではアサリ,サルボウ等の二枚貝 を初めとした水産生物の増産に大きな効果を上げてい る。しかし,沖合のタイラギ潜水器漁場では覆砂によっ て稚貝の着底の増加は確認されるものの,成貝まで成長 し漁獲につながる実績は上がっておらず,沖合域に適し た漁場改善手法の開発が急務である。

本調査は有明海福岡県海域で過去にタイラギ潜水器漁 業の主要漁場であったにもかかわらず,近年タイラギの 生息量が減少している峰の洲漁場を試験漁場とし,沖合 域における漁場改善手法の効果を検証することを目的と する。

漁場改善手法として,峰の洲斜面部に平面覆砂を実施 し,覆砂前後で水質,底質環境及び生物生息状況の変化 を把握し,それぞれの底質改善効果を検証する。

21年度に実施した峰の洲天板部における山型覆砂と22 年度に実施した峰の洲斜面部におけるサルボウ殻散布区 では、タイラギの生息状況の改善は認められなかった。 一方、平成21、22年度に実施した峰の洲斜面部に施工し た覆砂区では、対照区よりもタイラギの生息密度が高く なり、特に21年度に対照区の約5倍のタイラギの生息が 確認された。そこで23年度は従来(50m×240m)よりも 覆砂の形状を横長(34m×600m)にし、3つの水深帯(水 深5m,7m,10m)における効果を検証した。

方 法

1. 沖合域における斜面覆砂漁場調査

調査は、平成21~23年度に造成した図1に示す峰の洲 海域の斜面部の覆砂漁場で実施した。

(1) 底質調査

底質調査は図2に示した21年度斜面覆砂区,22年度斜面 覆砂区,23年度斜面覆砂区(水深7m),斜面対照区(水 深7m),23年度斜面覆砂区(水深5m),23年度斜面覆砂 区(水深10m)の6点で,平成26年4月~平成27年3月まに 計11回実施した。

底質試料の採取は潜水士が柱状採泥によって行った。 採取した底質は研究所内で1時間静置し,底質上に堆積し た浮泥の厚さ(以後,浮泥堆積厚とする)を測定した。

底質の酸揮発性硫化物量(以後,硫化物量とする), 強熱減量,泥分率,中央粒径値,硫化水素について,0~5 cm層,5~10cm層,10~15cm層に分けて分析を行った。泥 分率と中央粒径値は,粒度組成の分析結果より算出した。 酸揮発性硫化物量は検知管法,強熱減量は底質調査方法 (昭和63年環水管第127号) II,粒度組成はTrask法により 分析した。

(2) 生物調査

図3に示した調査点で、北原式定量プランクトンネット(目合100µm)で海底上1.5mより海面まで鉛直曳きにより試料採取し、タイラギ浮遊幼生の単位容積当りの 個数を算出した。

底質調査と同じ調査点において,平成26年7月から12 月にかけて幅25cm,長さ1m,深さ1cmの底質を潜水ソレッ ジネットを用いて採取し,タイラギ初期稚貝の生息密度 を測定した。

また,各調査点において平成26年4月から平成27年3月 にかけて,1m×10mの範囲内に生息するタイラギをライ ンセクト法により採取し,殻長から25年級群と26年級群 に分けて計数,それぞれ殻長の測定を行った。

併せて,平成26年5月,8月,12月及び平成27年2月に,50 cm方枠内の表層5cmの底泥を採取し,生息するベントスの 種類,個体数,湿重量についても解析した。

(3) 水質調査

底質調査,生物生息量調査と同じ調査点において,連続 観測機器を設置し,底層の水温,潮流,酸素飽和度,塩分, クロロフィル蛍光値について10分間隔で測定を行った。 測定機材はJFEアドバンテック社製を用いた。

2. 沖合域における天然優良漁場調査

図3のst.5竹ハゼ南漁場において,次に示す調査を行った。

(1) タイラギ生息状況調査

平成26年7月から10月にかけて幅25cm,長さ1m,深さ1cm の底質を潜水ソレッジネットを用いて採取し,タイラギ 初期稚貝の生息密度を測定した。

また、1m×30mの範囲内に生息するタイラギをライン セクト法により採取し、殻長から25年級群と26年級群に 分けて計数し、それぞれ、殻長を測定した。

(2) 底質調査

沖合域における斜面覆砂漁場調査の底質調査と同様の 項目(浮泥堆積厚,硫化物量,強熱減量,泥分率,中央 粒径値)について,同様の方法で分析を行った。

また,硫化水素については,菅原らの方法(砂泥堆積 物中溶存硫化物の簡便な現場抽出/吸光光度定量及びそ の有明海北東部堆積物への適応:平成22年分析化学59 号)で分析した。 (1) 栄養塩

図3に示した調査点において,表層と底層(B-1m)から採水したサンプルの栄養塩(無機三態窒素,珪酸塩, 燐酸塩,TN,TP)を測定した。 無機三態窒素,珪 酸塩,燐酸塩は,採水したサンプルを0.45µmのフィル ターで濾過した濾液を,TN,TPは,工場排水試験方法 (JIS K 0102)に従い,TNは銅・カドミウムカラム還元 法で,TPはペルオキソニ硫酸分解法で分解後,0.45µmフ ィルターで濾過した濾液をオートアナライザー(BLTEC SwAAt AACS V)で分析した。

(2) プランクトン組成及び沈澱量

図3に示した調査点において、北原式定量プランクト ンネット(目合100μm)を用いて、海底上1.5mより海 面まで鉛直曳きにより試料を採取し、プランクトン沈澱 量を測定後、顕微鏡下でプランクトンの同定と個体数を 計測した。

図1 事業実施場所

図2 覆砂工事概要図

調査点 st.1 208号 st.2 ひゃっかん <u> 王池島</u> st.3 <u>峰の</u>洲 st.4 st.5 竹ハゼ南 大牟田北 st.6 24号 st.7 st.8 七つハゼ 210号南側 st.9 st.10 31号

図3 浮遊幼生及び基礎生産力調査 調査点

4. 流動等影響解析

(1) 3次元モデルの流動シミュレーションの構築

海洋流動モデルFVCOM (The Unstructured Grid Finite Volume Coastal Ocean Model)を用いたシミュ レーションモデルを構築し,流動を再現した。

(2) 底層流が浮泥の移動,堆積に与える影響を検討

浮泥の移動に与える影響が大きいと考えられる底層流 のシミュレーション結果と本事業および有明海福岡県沖 底質環境調査委託事業の平成24,25年度の底質データを 用いて,浮泥の移動・堆積状況の検討した。

5. 海中育成ネットによるタイラギ生残試験

平成26年1月30日に柳川市地先の干潟域において採取 した当歳貝34個(殻長99.7±11.1mm)を,2月24日に海 中育成ネットのポケット部に収容し,三池島南東側の覆 砂した海底に張ったチェーンに固定した。海中育成ネッ ト(図6-1参照)は、上部に付けた浮子で海底から浮き 上がった状態で設置,海中育成ネット区とした。

追跡調査は,潜水により定期的にネットを船上に持ち 上がり,洗浄後,生残数等の計測を行った。

対照区は、1月20日に柳川市地先の干潟域において採 取した当歳貝30個(殻長115.7±14.2mm)を1月25日に、 前述の海中育成ネットを設置した砂泥質の海底に50cm角 のステンレス枠を設置し、その内側に30個を移殖、直植 え区とした。

結 果

- 1. 沖合域における斜面覆砂漁場調査
- (1) 底質調査
- 1) 浮泥堆積厚

調査点別の浮泥堆積厚を表1,図4に示した。年間平均 は2.1~2.8mmで,全調査点20mm未満で推移した。

2) 硫化物量

表1 各調査点の浮泥堆積厚(mm)

調査点	平均	最小	最大
21年度斜面覆砂区	2.8	1.0	7.0
22年度斜面覆砂区	2.0	1.0	3.0
23年度斜面覆砂区(水深7m)	2.3	0.0	6.0
23年度斜面覆砂区(水深 5 m)	2.7	2.0	5.0
23年度斜面覆砂区(水深10m)	2.5	1.0	7.0
斜面対照区(水深7m)	3.4	1.0	7.0

※20mm以上はタイラギの生息に不適

調査点別の硫化物量を表2,図5に示した。

①0~5cm層の硫化物量

年間平均は0.031~0.112mg/g乾泥, 全地点0.4mg/g乾 泥未満で推移した。

②5~10cm層の硫化物量

年間平均は0.006~0.089mg/g乾泥, 全地点0.4mg/g乾 泥未満で推移した。

③10~15cm層の硫化物量

年間平均は0.000~0.062mg/g乾泥, 全地点0.4mg/g乾 泥未満で推移した。

3) 強熱減量

調査点別の強熱減量を表3,図6に示した。

①0~5cm層の強熱減量

年間平均は3.0~4.8%,全地点10%未満で推移した。 ②5~10cm層の強熱減量

年間平均は2.0~4.2%,全地点で10%未満で推移した。 ③10~15cm層の強熱減量

310~15Cm層の強熬候里

年間平均は1.5~3.7%,全地点10%未満で推移した。

4) 泥分率

調査点別の泥分率を表4,図7に示した。

①0~5cm層の泥分率

年間平均は9.8~25.3%,全地点50%未満で推移した。 ②5~10cm層の泥分率

年間平均は4.1~17.9%,全地点50%未満で推移した。 ③10~15cm層の泥分率

年間平均は2.1~18.2%,全地点50%未満で推移した。 5) 中央粒径値

調査点別の中央粒径値を表5,図8に示した。

①0~5cm層の中央粒径値

年間平均は1.0~2.5で,全地点4未満で推移した。 ②5~10cm層の中央粒径値

年間平均は0.5~2.4で,全地点4未満で推移した。 ③10~15cm層の中央粒径値

年間平均は0.4~2.1で、全地点4未満で推移した。

表2 各調査点の荷	ž化物量	(mg/g乾泥)
-----------	------	----------

調査点	測定層	平均	最小	最大
	0~5cm層	0.091	0.000	0.199
21年度斜面覆砂区	5~10cm層	0.067	0.017	0.164
	<u>10~15cm層</u>	0.025	0.000	0.169
	0~5cm層	0.055	0.000	0.141
22年度斜面覆砂区	5~10cm層	0.061	0.000	0.146
	<u>10~15cm層</u>	0.080	0.000	0.396
	0~5cm層	0.036	0.000	0.133
23年度斜面覆砂区(水深7m)	5~10cm層	0.035	0.000	0.140
	<u>10~15cm層</u>	0.008	0.000	0.034
	0~5cm層	0.010	0.000	0.045
23年度斜面覆砂区(水深5m)	5~10cm層	0.011	0.000	0.058
	10~15cm層	0.005	0.000	0.049
	0~5cm層	0.174	0.021	0.398
23年度斜面覆砂区(水深10m)	5~10cm層	0.137	0.035	0.432
	10~15cm層	0.086	0.003	0.291
	0~5cm層	0.075	0.003	0.169
斜面対照区(水深7m)	5~10cm層	0.194	0.032	0.822
	10~15cm層	0.036	0.007	0.079

※0.4mg/g乾泥以上はタイラギの生息に不適

表3 各調査点の強熱減量(%)

調査点	測定層	平均	最小	最大
	0~5cm層	4.6	0.1	6.4
21年度斜面覆砂区	5~10cm層	3.6	2.8	5.0
	<u>10~15cm層</u>	3.2	2.3	6.0
	0~5cm層	3.9	2.4	5.8
22年度斜面覆砂区	5~10cm層	2.6	1.5	4.5
	10~15cm層	2.1	1.6	3.8
	0~5cm層	3.3	1.8	4.3
23年度斜面覆砂区(水深7m)	5~10cm層	1.9	1.1	5.0
	10~15cm層	1.8	1.1	3.5
	0~5cm層	3.0	2.2	4.6
23年度斜面覆砂区(水深 5 m)	5~10cm層	2.0	1.1	2.7
	10~15cm層	1.4	1.0	1.8
	0~5cm層	5.5	3.0	11.3
23年度斜面覆砂区(水深10m)	5~10cm層	4.8	2.5	11.3
	10~15cm層	3.5	1.6	6.8
	0~5cm層	5.0	2.8	10.6
斜面対照区(水深7m)	5~10cm層	4.4	2.8	12.4
	10~15cm層	3.4	2.4	4.9

※10%以上はタイラギの生息に不適

 $0\sim 5$ cm層

図6 各層の強熱減量量の推移

表4 各調査点の泥分率(%)

表5 各調査点の中央粒径値(φ)

調査点	測定層	平均	最小	最大	調査点	測定層	平均	最小	最大
	0~5cm層	19.9	12.6	28.1		0~5cm層	1.6	1.1	2.2
21年度斜面覆砂区	5~10cm層	10.8	5.6	20.0	21年度斜面覆砂区	5~10cm層	0.8	0.1	1.5
	10~15cm層	6.8	2.1	25.5		10~15cm層	0.4	-0.6	0.9
	0~5cm層	23.2	7.8	51.2	-	0~5cm層	1.7	0.6	4.0
22年度斜面覆砂区	5~10cm層	9.6	2.3	22.6	22年度斜面覆砂区	5~10cm層	1.0	0.3	2.4
	10~15cm層	7.4	2.9	23.7		10~15cm層	0.9	0.2	2.2
	0~5cm層	12.5	4.2	17.7	-	0~5cm層	1.0	0.6	1.9
23年度斜面覆砂区(水深7m)	5~10cm層	5.0	2.4	17.2	23年度斜面覆砂区(水深7m)	5~10cm層	0.5	0.0	1.8
	10~15cm層	3.3	1.6	12.0		10~15cm層	0.8	0.3	1.3
	0~5cm層	10.2	6.5	20.2		0~5cm層	1.0	0.5	1.4
23年度斜面覆砂区(水深5m)	5~10cm層	5.0	1.9	9.4	23年度斜面覆砂区(水深 5 m)	5~10cm層	0.8	0.3	1.1
	10~15cm層	2.7	1.4	4.5		10~15cm層	0.5	0.1	1.1
	0~5cm層	27.7	13.9	81.9		0~5cm層	1.9	1.3	4.0
23年度斜面覆砂区(水深10m)	5~10cm層	17.6	5.0	44.2	23年度斜面覆砂区(水深10m)	5~10cm層	1.7	1.2	3.0
	10~15cm層	14.5	2.2	48.1		<u>10~15cm層</u>	1.7	0.8	2.9
	0~5cm層	25.2	9.5	56.1		0~5cm層	2.5	2.1	4.0
斜面対照区(水深7m)	5~10cm層	20.8	12.9	48.2	斜面対照区(水深7m)	5~10cm層	2.4	2.0	3.9
	10~15cm層	16.6	13.4	27.3		10~15cm層	2.1	2.0	2.4
※50%以上	はタイラニ	ギの生	息に不適	<u>5</u>	※4以上は	タイラギの	生息に	不適	

※50%以上はタイフ キの生息に 个

図8 各層の中央粒径値の推移

(2) 生物調査

1) タイラギ浮遊幼生調査

調査点別のタイラギ浮遊幼生の出現数(個体/m³)を 表6に示した。タイラギ浮遊幼生は、8月6日にSt.3(三池 島) で2.2個体数/m³,9月17日にSt.6(大牟田北)で1.2個 体数/m³, 10月31日にSt.5(竹はぜ南)で4.0個体数/m³確 認されたが、出現数は非常に少なかった。

2) タイラギ生息状況調査

タイラギ初期稚貝生息密度

海底表層で採取されたタイラギ初期稚貝(殻長1mm以 上)の調査毎の生息密度を表7に示した。

タイラギ初期稚貝は、10月1日に4個体/m²出現した他

は確認されなかった。

②タイラギ生息密度

調査点別の25年級群,26年級群のタイラギ生息密度を 表8,図9に示した。

25年級群は,全調査点で0.2個体/m以下と非常に少なく,7月17日には確認できなくなった。

26年級群の平均生息密度は、水深10mの23年度斜面覆 砂区で1.3個体/㎡,次いで水深7mの21年度、23年度斜 面覆砂区で1個体/㎡以上の稚貝が確認された。次いで水 深5m区が少なく、最も少なかったのが斜面対照区で0.3 個体/㎡であった。

また,26年級群は,9月17日から確認されはじめ,11 月14日には各区1.4~1.7個体/㎡,1月14日に0.5~2.0個 体/㎡となったが,2月13日には21年度,23年度斜面覆砂 区(7m)以外で確認されなくなった。

③タイラギ殻長

25年級群,26年級群のタイラギ殻長を表9,図10に示した。

25年級群の平均殻長は, 69.6~93.2mmであり, 26年級 群は, 57.7~71.6mmであった。

3) 底生生物

各調査点における底生生物の調査毎の種類数を表10, 個体数を表11,湿重量を表12に示した。

g 未満の種類数

平均種類数は,23年度斜面覆砂の水深10m区以外の全 ての覆砂区で,対照区の40.3種より多かった。 ②1g以上の種類数

平均種類数は、全覆砂区で対照区以上となった。

④1g未満の個体数と湿重量

平均個体数と湿重量は,全覆砂区で対照区以上となった。

⑤1g以上の個体数と湿重量

平均個体数と湿重量は,全覆砂区で対照区以上となっ た。

1g以上の大型個体の主な種類は、サルボウ、コケガ ラス、タイラギ等の二枚貝類であった。

(3)水質調査

1) 水温

各調査点の1日の平均水温の推移を図11に示した。

全調査点でほぼ同様の推移を示し、8月23日が28.9℃ と最も高く、2月19日に9.2℃と最も低かった。調査点に よる水温の差は認められなかった。

昨年度の最高水温は9月10日に記録した27.6℃であり, 本年度の方が1.3℃高かった。また,昨年度の最低水温 は1月28,29日に記録した9.4℃であり,今年度の最低水 温とほぼ同様であった。

2)酸素飽和度

各調査点の1日の平均酸素飽和度の推移を図12に示した。酸素飽和度は全調査点で潮汐に連動した周期的な変動を示し、大潮時に増加、小潮時に減少する傾向であった。また、主に6月と8月に40%を下回る貧酸素が確認された。

	地点	4月30日	5月20日	6月18日	7月17日	8月6日	8月26日	9月4日	9月17日	10月1日	10月24日	10月31日	11月14日	11月28日	平均
St.1	208号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.2	ひゃっかん	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.3	三池島	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
St.4	峰の洲	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.5	竹ハゼ南	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.3
St.6	大牟田北	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.1
St.7	24号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.8	七つハゼ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.9	210号南側	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St.10	31号	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	合計	0.0	0.0	0.0	0.0	2.2	0.0	0.0	1.2	0.0	0.0	4.0	0.0	0.0	0.6

表6 各調査点の浮遊幼生の出現数(個体/m³)

(単位:個体/m3)

表7 タイラギ初期稚貝の生息密度

初期稚貝生息密度(個体/m ²)	7月17日	8月20日	9月17日	10月1日	11月14日	12月16日	平均
23年度斜面覆砂区(水深7m)	0.00	0.00	0.00	4.00	0.00	0.00	0.67
斜面対照区(水深7m)	0.00	0.00	0.00	0.00	0.00	0.00	0.00

25年級群

26年級群

表9 タイラギ殻長(mm)

25年級群

26年級群

調査点	平均	最小	最大	調査点 平均 最小 最大
21年度斜面覆砂区	86.2	86.2	86.2	21年度斜面覆砂区 60.6 43.5 72.6
23年度斜面覆砂区(水深5m	ı) 93.2	73.0	113.5	23年度斜面覆砂区(水深 5 m) 71.6 49.8 92.8
23年度斜面覆砂区(水深 7 1	n) 71.3	71.3	71.3	23年度斜面覆砂区(水深7m) 57.7 38.6 69.7
23年度斜面覆砂区(水深10m	n) 72.0	72.0	72.0	23年度斜面覆砂区(水深10m) 68.2 66.5 69.9
斜面対照区(水深7m)	69.6	67.4	71.9	斜面対照区(水深 7 m) 62.0 58.7 67.4
120 100 (II) 戦略 60 40 4月 5月 6月 7月 8月	 21年度斜面覆 23年度斜面覆 23年度斜面覆 23年度斜面覆 34面対照区(9月 10月 11月 12) 	 砂区 (水深 5 m) 砂区 (水深 7 m) 秋深 7 m) 1月 2月 	 3月	120 100 100 100 100 100 100 100
	25年級群			26年級群

図10 タイラギ平均殻長の推移

表10 底生生物の種類数

	5月21日	9月17日	11月14日	2月12日	平均
21年度斜面覆砂区	41 (2)	49 (5)	55 (2)	49 (4)	48.5 (3.3)
22年度斜面覆砂区	43 (0)	35 (0)	40 (0)	61 (1)	44.8 (0.3)
23年度斜面覆砂区(水深5m)	47 (0)	57 (1)	37 (1)	69 (6)	52.5 (2.0)
23年度斜面覆砂区(水深7m)	44 (2)	51 (2)	44 (2)	48 (2)	46.8 (2.0)
23年度斜面覆砂区(水深10m)	34 (2)	37 (0)	36 (0)	53 (0)	40.0 (0.5)
斜面対照区(水深7m)	34 (0)	28 (0)	39 (0)	60 (1)	40.3 (0.3)

※1g未満の種類数,()内は1g以上の種類数

5月21日 平均 9月17日 11月14日 2月12日 21年度斜面覆砂区 796 (8)980 (20)796 (12)(80)1565.0 (30.0)3688 22年度斜面覆砂区 2306.0 (2.0)572(0)564(0)652 (0)7436 (8)23年度斜面覆砂区(水深5m) (8.0)(0)1496 (4)608 (4)2924 (24)1479.0 888 23年度斜面覆砂区(水深7m) 672 (4)1208 (8)760 (8)1220 (8)965.0 (7.0)23年度斜面覆砂区(水深10m) (0)917.0 (2.0)772 (8)584 (0)388 (0)1924 斜面対照区(水深7m) 424 (0)388 (0)532 (0)1100 (4)611.0 (1.0)

表11 底生生物の個体数

※単位: 個体/m2, ()内は1g以上の個体数

表12 底生生物の湿重量

	5月21日	9月17日	11月14日	2月12日	平均
21年度斜面覆砂区	11.9 (11.3)	21.0 (57.6)	35.8 (74.3)	56.5 (308.8)	31.3 (113.0)
22年度斜面覆砂区	8.3 (0.0)	10.3 (0.0)	9.4 (0.0)	65.6 (12.2)	23.4 (3.0)
23年度斜面覆砂区(水深5m)	17.4 (0.0)	17.6 (22.2)	20.8 (6.2)	64.6 (61.9)	30.1 (22.6)
23年度斜面覆砂区(水深7m)	8.8 (10.4)	53.4 (107.5)	18.4 (11.2)	32.6 (12.3)	28.3 (35.4)
23年度斜面覆砂区(水深10m)	17.2 (11.2)	13.4 (0.0)	6.8 (0.0)	14.5 (0.0)	13.0 (2.8)
斜面対照区(水深7m)	7.7 (0.0)	9.6 (0.0)	9.4 (0.0)	24.8 (6.2)	12.9 (1.5)

3. 沖合域の天然優良漁場調査

(1) タイラギ生息状況調査

1) 初期稚貝生息密度

優良な天然漁場である竹ハゼ南漁場において海底表層 で確認されたタイラギ初期稚貝(殻長1mm以上)の調査 毎の生息密度を表13に示した。

タイラギ初期稚貝の生息は、8月6日に8個体/㎡がみら れた他は確認されなかった。

2) 生息密度

竹ハゼ南における25年級,26年級群タイラギの生息密 度の推移を図13,平均殻長の推移を図14に示した。

①25年級群

生息密度は25年10月の調査時に最も多く、3.5個体/m²

※単位: g/m2, ()内は1g以上の個体数

図12 各調査点における1日平均酸素飽和度の推移

の密度で生息していたが、その後減少し、平成26年4月 以降はほとんど確認できなくなった。平均殻長は生息が 確認された平成25年9月には49.7mmであったが、平成26 年3月には86.3mmと成長した。その後の調査では、いず れも採取数が非常に少なく、そのサイズが小さかったた め、平均殻長が減少した。

②26年級群

26年9月中旬から確認され生息密度は約8.7個体/㎡で あった。その後、11月下旬には、約14.3個体/㎡と増加 し、それ以降は10個体/㎡以上の密度で生息していた。

平均殻長は、26年9月に44.8mmが、翌年3月には85.4mm と成長した。

図14 タイラギ平均殻長の推移

(2) 底質調査

1) 浮泥堆積状況

竹ハゼ南漁場における浮泥堆積厚は、表14、図15に 示すとおり、平均2.0mmで、期間中20mm未満で推移した。 2) 硫化物量

年間平均値は表15に示すとおり、5~10cm層で最も高 く0.093mg/g乾泥で,次いで,0~5cm層の0.043mg/g乾泥, 10~15cm層の0.036mg/g乾泥であった。また全測定層で 図16び示すとおり0.4mg/g乾泥未満の値で推移した。

3) 強熱減量

年間平均値は表16に示すとおり、4.1~4.8%であり、 測定層別の差はほとんど認められなかった。また図17に 示すとおり調査期間を通じて全測定層で10%未満で推移 し、概ね同様の傾向を示した。

4) 泥分率

年間平均値は,表17に示すとおり18.0~18.8%であり, 測定層別の違いはほとんど認められなかった。また,図 18に示すとおり調査期間を通じて概ね50%未満で推移 し、3層とも同様の傾向を示した。

5) 中央粒径值

中央粒径値の平均値は表18に示すとおり、2.4~2.5で あり、測定層別の違いはほとんど認められなかった。ま た図19に示すとおり調査期間を通じて全測定層で4未満 で推移し、概ね同様の傾向を示した。

6) 硫化水素濃度

硫化水素濃度は、表19、図20に示すとおり、期間中、 全層共に検出限界未満の低い値で推移した。

表14	浮泥堆積厚	(mg/g乾泥)
-----	-------	----------

調査点	平均	最小	最大
竹ハゼ南漁場	2.0	0.0	3.0

※20mm以上はタイラギの生息に不適

表15 硫化物量 (mg/g乾泥)

平均

0.043

0.093

0.036

最小

0.017

0.034

0.017

最大

0.108

0.164

0.061

◆ 0 ~ 5 c m層

━ 5 ~10 c m層

-10~15cm層

測定層

0~5cm層

5~10cm層

10~15cm層

※ 0.4mg/g乾泥以上はタイラギの生息に不適

調査点

竹ハゼ南漁場

1.0

0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.1

0.0

P

表16 強熱減量(%)

調査点	測定層	平均	最小	最大
	0~5cm層	4.8	3.0	6.4
竹ハゼ南漁場	5~10cm層	4.6	2.4	6.0
	10~15cm層	4.1	2.6	6.4

図17 竹ハゼ南漁場における強熱減量の推移

表17 竹ハゼ南漁場における泥分率(%)

調査点	測定層	平均	最小	最大
	0~5cm層	18.0	2.8	32.7
竹ハゼ南漁場	5~10cm層	18.3	11.3	27.2
	10~15cm層	18.8	10.5	32.2

図16 竹ハゼ南漁場における硫化物量の推移

₩50	%以	上は	タノ	イラ	ギの	生.	息に	不適
-----	----	----	----	----	----	----	----	----

4月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月 3月

-

表18 竹ハゼ南漁場における中央粒径値

調査点	測定層	平均	最小	最大
	0~5cm層	2.4	2.0	2.8
竹ハゼ南漁場	5~10cm層	2.4	2.0	2.7
	10~15cm層	2.5	2.1	3.0

※4以上はタイラギの生息に不適

※※φ4以上は4として集計

図19 竹ハゼ南漁場における中央粒径値の推移

表19 竹ハゼ南漁場における硫化水素濃度 (mg/1)

調査点	測定層	平均	最小	最大
竹ハゼ南漁場	0~5cm層 5~10cm層 10~15cm層	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

※3mg/1以上はタイラギの生息に不適

4. 基礎生産力調査

(1) 栄養塩

基礎生産力調査の水質分析項目のうち,DIN,PO4, SiO2についての結果を表20~25に,図21~26に示した。 また,海域区分別の表層と底層におけるDIN,PO4,SiO2 の推移を図27~32に示した。

海域区分は,干潟域:柳川沖(208号,ひゃっかん, 24号,七つハゼ),干潟域:大牟田沖(43号,41号), 干潟縁辺部(210号,31号),沖合域(三池島,峰の洲, 竹ハゼ南,大牟田北)とした。

各調査点における平均値は,表層でDIN:2.92~16.25 μmol/1, PO4:0.43~1.06μmol/1, SiO2:30.30~ 78.24μmol/1,底層でDIN:3.86~11.14μmol/1, PO4 :0.49~0.94μmol/1, SiO2:26.56~64.13μmol/1で

表20 各調査点の表層におけるDIN(μmol/1)

地点名	DIN:最大	DIN:最小	DIN:平均
208号	28.12	4.17	13.83
ひゃっかん	17.97	1.12	5.95
三池島	13.97	0.28	4.65
峰の州	13.70	0.00	4.58
竹ハゼ南	10.84	0.00	3.29
大牟田北	10.81	0.00	2.92
24号	27.49	0.69	8.56
ななつはぜ	30.39	0.65	9.99
210号	18.66	0.08	5.49
31号	11.44	0.00	3.77
43号	16.06	0.00	6.64
41号	38.61	2 76	16 25

あった。

表層のDINは、それぞれの海域とも12月に最大となり、 干潟域:柳川沖と干潟域:大牟田沖、干潟縁辺部と沖合 域で同様に推移した。底層は、表層と比較すると、海域 におけるDINの推移の仕方に差は少なく、全域でほぼ同 様に推移した。

表層のP04は、7月~8月にかけて干潟縁辺部~沖合域 における値が干潟域に比べて低い傾向にあったが、全域 でほぼ同様に推移した。底層のP04は、海域における差 は少なく、全域でほぼ同様に推移した。

Si0₂は,表層,底層ともに7月に最大となり,8月~9 月を除けば,干潟域:柳川沖と干潟域:大牟田沖,干潟 縁辺部と沖合域で同様に推移した。

衣 l 石 m	国点の風層の		$\mu \mod 1 / 1 /$
地点名	DIN:最大	DIN:最小	DIN:平均
208号	28.08	3.00	11.14
ひゃっかん	15.46	0.00	5.15
三池島	11.15	0.24	4.52
峰の州	8.97	0.39	3.86
竹ハゼ南	9.83	0.37	3.96
大牟田北	10.93	0.43	3.98
24号	17.38	0.45	6.56
ななつはぜ	18.95	0.64	6.96
210号	13.63	0.19	5.09
31号	11.17	0.68	4.14
43号	16.42	0.00	4.86
41号	29.50	1.20	10.69

図22 各調査点の底層におけるDINの推移

表 22	各調査点の表層におけるPO ₄ (µmo1/1)
14 00	

地点名	PO₄:最大	PO ₄ :最小	PO₄:平均
208号	2.00	0.38	1.06
ひゃっかん	1.51	0.19	0.69
三池島	1.23	0.08	0.59
峰の州	1.29	0.08	0.59
竹ハゼ南	1.27	0.08	0.49
大牟田北	1.00	0.05	0.43
24号	2.18	0.06	0.72
ななつはぜ	1.87	0.37	0.97
210号	1.52	0.11	0.63
31号	1.10	0.07	0.49
43号	1.22	0.07	0.57
41号	1.85	0.05	0.91

図23 各調査点の表層におけるPO4の推移

表24	各調査点の表層におけるSiO ₂ (μmol/1)

地点名	SiO ₂ :最大	SiO ₂ :最小	SiO ₂ :平均
208号	131.37	22.54	78.24
ひゃっかん	103.93	18.02	44.87
三池島	83.83	9.97	41.18
峰の州	98.94	3.28	41.40
竹ハゼ南	85.07	2.55	31.85
大牟田北	83.99	2.67	30.30
24号	90.56	5.40	49.85
ななつはぜ	119.58	18.82	59.44
210号	92.75	11.20	44.69
31号	94.12	4.13	33.57
43号	89.14	5.96	38.97
41号	117.85	19.83	60.64

表23 各調査点の底層におけるPO₄(μ mol/1)

地点名	PO₄:最大	PO ₄ :最小	PO₄:平均
208号	1.68	0.34	0.94
ひゃっかん	1.41	0.12	0.62
三池島	1.20	0.12	0.60
峰の州	0.99	0.09	0.55
竹ハゼ南	0.95	0.08	0.51
大牟田北	0.89	0.06	0.49
24号	1.30	0.06	0.62
ななつはぜ	1.39	0.26	0.75
210号	1.47	0.14	0.65
31号	1.09	0.09	0.53
43号	1.12	0.08	0.55
41号	1.64	0.03	0.75

図24 各調査点の底層におけるPO4の推移

表25 各調査点の底層におけるSiO₂(μmol/l)

地点名	SiO ₂ :最大	SiO ₂ :最小	SiO ₂ :平均		
208号	108.06	22.41	64.13		
ひゃっかん	75.03	14.53	38.17		
三池島	66.32	7.04	32.72		
峰の州	67.55	2.33	29.52		
竹ハゼ南	56.54	4.24	27.60		
大牟田北	58.55	1.06	26.56		
24号	86.92	6.05	43.78		
ななつはぜ	97.81	15.14	45.24		
210号	69.50	8.82	37.37		
31号	61.66	3.83	29.16		
43号	74.23	4.70	34.75		
41号	104.61	9.92	50.59		

図27 表層におけるDINの推移(海域区分別)

図29 表層におけるPO4の推移(海域区分別)

(2) プランクトン組成

1) 植物プランクトン

年間を通じての植物プランクトン種類数と細胞数の出 現状況を図33に,主な出現種の割合を図34に示した。

植物プランクトンの種類数の組成は, 珪藻類が多くを 占め, 次に渦鞭毛藻類が多かった。細胞数も同様の傾向 にあった。期間を通じた優占種は, 珪藻類のSkeletonema costatumが60.7%, 次にChaetoceros spp. が9.5%で,

図28 底層におけるDINの推移(海域区分別)

図30 底層におけるPO4の推移(海域区分別)

小型珪藻類の優占率が高かった。

2) 動物プランクトン

年間を通じた種類数と細胞数の出現状況を図35に,主 な出現種の割合を図36に示した。

細胞数は7月17日にピークがみられたが、それ以降は 減少傾向にあった。細胞数の増加要因は主には小型カイ アシ類となる0ithona davisaeの出現によるもので、コ ペポダイト期幼生(Copepodite of 0ithona)も含め、

- 292 -

優占的に出現していた。

動物プランクトンの優占順位はCopepodite of Oithona, Oithona davisae, Microsetella norvegica, Nauplius of Copepoda の順であった。

(3) プランクトン沈澱量

各調査点のプランクトン沈殿量の推移を図37に示し た。7月9日、10月4日、1月下旬以降に多かった。

7月9日には、特にSkeletonema costatumや動物プラン クトンのCopepodite of Oithonaが多かった。

10月4日にプランクトン沈殿量が多く、特に動物プラ ンクトンのMicrosetella norvegicaが多かった。

1月下旬以降にプランクトン沈殿量が多く、特にEucampia zodiacus, Chaetoceros debile, Rhizosolenia setigera の3種が多かった。

種類数

図34 植物プランクトン組成

種類数

細胞数

図36 動物プランクトン組成

図37 各調査点のプランクトン沈殿量の推移

- 5. 流動等影響解析
- (1) シミュレーションモデルの構築
- ○基本モデル(図38)

海洋流動モデルFVCOM (The Unstructured Grid Finite Volume Coastal Ocean Model)

○条件設定

水平・鉛直メッシュ,計算対象期間,時間間隔,の り網・支柱の抵抗など

○データ作成

メッシュ,水深,水温,塩分,潮汐(主要5分潮), 風,河川流量・河川水温,降水,熱フラックス(短 波放射,長波放射,顕熱,潜熱),海苔網・支柱の 座標・抵抗

(2) 構築モデルの再現性の確認

構築したシミュレーションモデルにより,平成26年3 月の流況を再現し,現地観測結果と比較検証することで, 構築したモデルが底層流を精度良く再現できることを確 認した(図39)。

(3) 流況予測

流況予測は、図40に示したのり養殖施設(支柱及びの り網)について、以下の4ケースの流況予測を実施した。 結果の概要を図41に示す。

- Case1:支柱及びのり網設置時(福岡県側及び佐賀県側)
- Case2:支柱及びのり網の一時撤去時(福岡県側の一部 区画の撤去)
- Case3:のり網の一時撤去時(福岡県側の一部区画撤去)
- Case4:支柱及びのり網の全撤去時(福岡県側及び佐賀 県側とも撤去時)
 - (4) 浮泥の移動・堆積状況の検討

1)のり養殖の支柱及びのり網は,養殖区画内の流速を 低減させ,澪筋部の流速を速くさせる効果がある。

2)支柱及びのり網を一部撤去することにより,撤去した区画周辺の流速に変化がみられるが,のり網のみの撤 去では,その変化はわずかである。

3) 残差流(15日間平均流)の計算結果では,のり漁場周辺の底層流は沖だし方向の流れとなっている。

4) 海苔養殖漁場周辺で実施された底質調査結果による

と、平成24年7月九州北部豪雨により堆積した浮泥が、 のり養殖施設撤去後の4月には、減少していた。(ただし、 浮泥堆積量が少なかった平成25年度ではその傾向は顕著 でなかった。

6. 海中育成ネットによる生残試験

海中で育成したタイラギと直植えのタイラギの生残を 比較するため、図42に示した海中育成ネットを用いた試 験を行った。タイラギの生残率の推移は、図43に示した。

海中育成ネット区では,試験開始後,平成24年9月までほとんど斃死はみられず,11月からわずかに減少したものの,翌年2月27日まで85%と高い生残率を示した。

直植え区では24年3月7日まで83%であったが、4月9日 に57%、5月22日に43%と低下し、7月4日以降は、生貝 が全て確認できなくなった。

【鉛直メッシュ】

有明海区のり養殖漁場区周辺の干潟・澪筋,のり網設置 形状等の複雑形状を三角形要素で詳細に表現

図38 シミュレーションモデル (FVCOM) の概要

観測値(海底上5cm)

図40 計算に用いたのり養殖区画位置とのり網密度

図41 流況予測結果 (Case1:設置時との比較)

考 察

1. 斜面覆砂効果及び斃死要因の検討

平成21,22年度の結果から,峰の洲の斜面部における 覆砂域のタイラギについては,21,22年級群ともに生息 が確認されてから当歳貝のうちは,対照区と比較し高い 生息密度を維持していた。21年級群については,その後, 1歳貝になっても大きな斃死がなく潜水器漁業者による 試験操業では,成貝が漁獲され,覆砂域の漁場としての 活用が期待された。しかし,22年級群については,平成 23年6月下旬から8月中旬にかけて,有明海福岡県沖の全 海域で,大量斃死が起き,これと同時期に,峰の洲覆砂 域におけるタイラギも斃死し,生息が確認できなくなっ た。以上のことから,斜面部の覆砂におけるタイラギ稚 貝の着底量を増加させる効果は確認されたが,タイラギ の漁獲に結びつくかどうかは,その後の生残状況に大き く左右されることが分かった。

23年級群については、天然漁場でほとんど生息が確認 されていない状況の中、峰の洲の斜面覆砂区では、タイ ラギが比較的高い生息密度で生息していたため、覆砂に よるタイラギ稚貝の着底量を増加させる効果があったと 考えられた。特に、平成23年度に施工した覆砂の水深5 mと7mの調査点では、対照区や水深10mの調査点と比 較し高い密度で推移したため、水深が5~7mと浅い海域 での覆砂が有効であると考えられた。しかし、水深が浅 い覆砂域においても、平成24年2月からタイラギの生息 が徐々に減少し、8月以降は全調査点で確認できなくな った。24年級群についても、同様に平成25年5月からタ イラギの生息が徐々に減少し、8月以降は全調査点でほ とんど確認できなくなった。

24年級群の斃死要因の検討のため、4~8月までの水深 7m区の底質(浮泥堆積厚,硫化物量,強熱減量,泥分率, 中央粒径値,硫化水素濃度),水質(酸素飽和度,塩分) のデータを用いた検証を行った。

まず,底質についての検討結果は次の通りとなった。 浮泥堆積厚はタイラギの生息に適した10mm以下で推移し た。硫化物量,強熱減量,泥分率,中央粒径値は,0~5 cm層,5~10cm層,10~15cm層ともに,概ねタイラギの 生息に適した値(硫化物量:0.1mg/g乾泥未満,強熱減 量:5%未満,泥分率:30%未満,中央粒径値:3未満) で推移した。また,二枚貝類の生息に悪影響を及ぼす硫 化水素についても,全層でほとんど発生していなかった。

次に,水質についての検討結果を述べる。酸素飽和度 については、24年級群の生息密度が減少した5月から8月 の期間中に、23年度斜面覆砂区で40%を下回る貧酸素が 一時的に確認されたが、長期間にわたる貧酸素は確認で きなかった。塩分も、一時的に20を下回る低塩分が確認 されたが、継続時間が短時間であったため、タイラギの 生息に大きな影響を及ぼすほどではないと考えられた。

以上のことから,底質調査や水質調査からタイラギの 斃死要因を特定することはできなかった。

2. 調査地点別の24, 25年級群の生息状況及び底質環境 からみた覆砂効果

平成24,25年度に、有明海福岡県沖でタイラギの浮遊 幼生調査を実施したが、干潟から沖合にかけて全調査点 で、浮遊幼生の出現量は非常に少ない結果となった。ま た,峰の洲覆砂域におけるタイラギの当歳貝の生息量は、 平成21~23年度と比較し非常に少ない状況であった。

浮遊幼生の出現量が少なかったため、昨年度の調査と 比較すると着底量も少なかったが、23年級群同様に平成 23年度に実施した覆砂域の水深が5mと7mの調査点の方 が対照区や水深10mの調査点と比較し着底稚貝の生息密 度が高く、また潜水による調査においても高い生息密度 で推移した。また、底質のうち硫化物量や泥分率の平均 値を比較すると水深が5mと7mの調査点の方が、対照区 や水深10mの調査点より低い値を示し、底質環境が改善 されていることが分かった。流速については、水深が浅 いほど速くなるという傾向を示した。

以上のことから、5m~7mの水深の浅い海域での斜面 部における覆砂域では、タイラギの着底量の増加効果及 び流速が速く底質環境の改善効果が高いため,水深の浅 い海域での斜面覆砂が有効であると考えられた。

3. 斜面覆砂の耐久性及び効果の持続性について

平成23年度斜面覆砂区について、24、25年度に深浅測 量を行った結果,最大で較差0.3mの箇所が2カ所確認で きた。しかし,平均較差が5cm未満であることを考慮す れば,前年度からの海底の水深変化はほとんどないもの と考えられた。

まとめ、今後の課題、方針

- 1. 斜面覆砂による効果の検証
- (1) 平成23~25年度は天然域におけるタイラギの生息 量が少なく,覆砂によるタイラギの増産効果の把握 が困難であったため,環境面のデータ蓄積を中心に 行った。
- (2) 斜面覆砂漁場では水深5m,7m域で10m域と比較 して流速が速く,底質及びタイラギの生息状況も良 好であったことから7m以浅での覆砂が有効であるこ とが示唆された。

2. タイラギ斃死要因について

- (1)前述したとおり、平成23~25年度とタイラギの生息量が少なく、平成24、25年はタイラギの潜水器漁業が休漁となる事態に陥った。
- (2)今まで水質や底質などの環境データを蓄積してき たが、それだけではタイラギ斃死要因の特定は困難 で、さらにタイラギの生理・生態面の把握が重要と 考えられた。
- (3)生理面では、タイラギの成熟状況や活力などを調べ、生態面では、平成24年度から始めた幼生調査、 基礎生産力(餌料環境)調査等を継続する必要があると考えられた。
- (4)有明海,豊前海,筑前海のタイラギを13遺伝子で EST解析を行ったところ,遺伝的に大きな差がみられ なかった。このことから,有明海におけるタイラギ の斃死要因が,当該領域の遺伝的差異によるもので はないとことが示唆された。
- (5) 今後は,底質や外敵の影響を除去した海中育成ネ ット試験にも取り組む必要があると考えられた。