関門地区におけるマダコの成熟ならびに成長

上田 拓

（研究部）

福岡県北部の関門地区において，マダコ Octopus valguris は，主にたこつぼ，かご，つり漁業によって漁獲さ れる重要な漁業対象種である。そこで，持続的な資源利用の基整となる本海域におけるマダコの生物学的知見を得ることを目的とし，2007年4月から2009年9月において，生殖腺重量や卵径などに関する精密測定，ならびに体長組成に関する調査，解析を行った。その結果，雌の生殖腺重量と卵径の推移より， $3 \sim 4$ 月の春期と $8 \sim 9$月の秋期を中心として性成熟が進み産卵が行われていること，外套腹面長 70 mm 前後になると性成熟が進むこと が確認された。また，外套腹面長組成を基に混合正規分布への分解を行った結果，同じ月に $2 \sim 4$ 群の発生群が混在しているが，漁獲の中心は春発生群と秋発生群が中心であることが明らかとなった。

キーワード：関門海峡たこ，マダコ，成熟，成長，混合正規分布

福岡県北部の関門地区（図 1）において，マダコは，主にたこつぼ，かご，つり漁業によって漁獲される重要 な漁業対象種である。

また，北九州市漁協平松支所（以下平松支所）では，日本でも有数の流れの速い関門海峡で育ったタコとして の差別化を図るために ‘関門海峡たこ’という名称で商標登録するなど，地域ブランド確立を目指した取り組み も行われている。
あわせて，一部の支所では重量 500 g 以下の個体の漁獲を自主的に禁止するなどの資源管理に関する積極的な取り組みも行われている。

一方，本海域においてのマダコの生態に関する知見は乏しく，漁業者からは現状の漁獲強度で操業を続けた場合，持続的な資源利用が危ういのではといった声も聞か れる。

図1 調査海域図

そこで，本海域での成熟ならびに成長に関する調查 を実施し，持続的な資源利用を可能にするための基礎と なる生物学的知見を得ることを目的として研究を行っ た。

方 法

1．成熟

2007年 4 月から2009年 9 月の期間において，月 1 回の頻度で北九州市平松支所のたこつぼ漁業者より漁獲され たマダコを 30 kg 程度購入し，当センターに持ち帰った後，外套腹面長（外套後端から外套腹面開口部までの長 さ），重量，生殖腺重量（雄は精巣，雌は卵巣）を測定 した。また，生殖腺から雌雄を判別した。

あわせて体重に占める生殖腺重量の割合（GSI）を求 めた。

また，雌の成熟状況については卵の短径を指標とし て用いることができるので，1）万能投影機を用いて，一視野の中から卵母細胞をランダムに 4 個測定するととも に，最大のものを 1 個測定し，その作業を一個体あたり 5回繰り返した。

なお，同支所では 500 g 以下の個体の漁獲を禁止して いるが，つぼに入ったそれ以下のサイズの個体も持ち帰 るよう依頼した。

2．発生群

他海域では産卵時期が異なる複数の発生群がいると いう知見があるので，${ }^{2)}$ 本海域でも同様に各発生群を正規分布に分離し，群別の成長様式について検討を行った。 2007年 4 月から2009年 9 月の期間において，月 1 回 の頻度で平松支所のマダコ畜養施設に畜養されている全 マダコの重量測定を行った。

一般的に重量は体長のべき乗に近似され，体長が正規分布する場合，体重は正規分布しない。そこで，精密測定のデータから外套腹面長一体重の関係式を求め，そ れを基に蓄養場における体重組成を外套腹面長組成に変換し解析に用いた。

混合正規分布の分解に当たつては五利江の解析シー ト ${ }^{3)}$ を一部改変（正規分布の平均値と標準偏差も同時に求める）したシートを MS 社製 excel で作成し（図 2 ）， ソルバーを用いて非線形最小二乗法および最尤法により各群のパラメータ（混合比，平均外套腹面長，標準偏差） を求めた。

発生群の分解の手順を以下に示す。
各月ごとに， 5 mm 刻みで外套腹面長をヒストグラム に分解する。測定誤差を考慮し，また，発生群を視覚的 に区別しやすいように前後の階級を含め 3 項移動平均に よる平滑化を行った。

そのデータを基に，最小二乗法ではモデルによる確立密度の期待値と度数分布の実測値の残差平方和が最小と なり，最尤法では同時確率密度（各階級の確率密度の積） の対数が最大となるパラメータを求めた。

モデルシート，本文中で用いた記号，計算式は以下の通りである。
pi ：発生群iの混合比
$\mu \mathrm{i}$ ：発生群 i の平均外套腹面長
$\sigma \mathrm{i}$ ：発生群 i の外套腹面長の標準偏差
L ：同時確率密度
h：外套腹面長の階級幅
F：総個体数
S：残差平方和
$F(x j):$ 外套腹面長階級 $x j$ に属する個体数
$f(x):$ 外套腹面長階級 $x j$ の相対度数分布，$f(x)=$ $\mathrm{F}(\mathrm{x}) / \mathrm{F}$
ソルバーの制約条件として，$\Sigma \mathrm{pi}=1, ~ 0 \leqq \mathrm{pi}, ~ 0 \leqq \mathrm{ul}$ ， $\mathrm{u} 1 \leqq \mathrm{u} 2$ ， $\mathrm{u} 2 \leqq \mathrm{u} 3$ ， $\mathrm{u} 3 \leqq \mathrm{u} 4, ~ 0 \leqq \sigma \mathrm{i}$ を設定した。各発生群のui，piについては，ヒストグラムのグラフ からおおよその数値を読み取り，初期値として設定した。

分解する正規分布の数（発生群数）については，まず最大 4 で計算し，その後グラフの当てはまり等から判断 し，必要に応じて3以下に減少させながら，ソルバーを動かした。

最小二乗法，最尤法による推定値の結果の妥当性に ついては，AIC（赤池情報量）並びに，混合正規分布の グラフの当てはまり具合によって判断した。

3．成長

伊予灘のマダコにおいてもつとも当てはまりが良か ったロジスティック式 ${ }^{21}$ を用いて本海域での成長式を求 めた。
$\mathrm{Lt}=\mathrm{L} \infty$／（ $1+\exp (-\operatorname{Asin}(2 \pi(\mathrm{t}-\mathrm{s}) / 12)-\mathrm{b}+\mathrm{ct})))$
ただしLt：月齢t時の推定外套腹面長（cm）
L_{∞} ：最大到達外套腹面長（cm）
A：成長の季節変動周期
t ：月齢
s ：周期関数の原点からのずれ
b ：定数
c ：定数
各パラメータについては，ソルバーを用いて最小二乗法により求めた。

また，各月の平均外套腹面長については，ソルバーに よる発生群分解で得られた平均外套腹面長を用いた。

結 果

1．成熟

（1）生殖腺

1）雌雄比

月別の雌雄比の推移を図3に示した。
計30回の測定を行い，測定数は1000個体で，雌雄比 は雄 54% ，雌 46% であり，やや雌が少ないものの特に目立った傾向は見られなかった。

そこで成熟可能サイズと思われる腹面長 70 mm 以上の個体について雌雄の出現比率を求めた（図4－1～3）。

やはり雄が 56% ，雌 44% と雄の比率がやや高い傾向が あったが，2007年では10月前後，2008年では，3月と8， 9月，12月，2009年では9月に雌の比率がやや高くなる傾向が見られた。

図2 混合正規分布分解シート

2 ）GSIを指標とした性成熟度の推移

雄は性成熟に伴う生殖器官重量の大幅な増加は見られ ず，GSI は体重増加に伴い減少傾向を示すため，性成熟に関する指数とは用いられないとの報告 ${ }^{5}$ がある。そ こで，本研究では性成熟の指標として雌の GSI を用い， その推移について検討を行った。

外套腹面長と，GSI の関係を図5に示した。外套腹面長 70 mm 前後から，GSI の大きな個体が出現していた。 そこで 70 mm 以上の個体について，月別の GSI 平均値の推移を図6に示した。

2007年は，8～9月，2008年は $3 \sim 4$ 月と $8 \sim 9$ 月， 2009年は 2 月と $8 \sim 9$ 月にGSIが上昇しており，例年，春期の 3 月前後と，夏期の 9 月前後に平均 GSI が上昇 する傾向が見られた。

（2）卵の成熟度

マダコの卵母細胞は短径 1 mm までは先の太い棍棒状 で不透明であるが， 1 mm を超えると半透明の長楕円球 に紐状の付着器がつく形状のものが現れ，産卵時と同様 の形態となる ${ }^{1}$ ため，短径 1 mm を超える卵母細胞を有 する個体を成熟個体と見なした。

年月別の成熟個体の出現割合について図 7 に示した。 2007年 4 月については，測定機器の不調により卵短径の測定が行えなかった。成熟個体の出現率は，2007年では 8～9月，2008年では $3 \sim 4$ 月と $8 ~ 9$ 月，2009年では 1月と，8～9月に高くなっており，GSI の上昇とほ ぼ似たような傾向を示した。

図3月別の雌雄比

図 4－2 外套腹面長70mm以上の個体の雌雄比（2008年）

図5 GSIと外套腹面長の関係

図4－1 外套腹面長70mm以上の個体の雌雄比（2007年）

図4－3 外套腹面長 70 mm 以上の個体の雌雄比（2009年）

図6 平均 GSI の推移

図8 雌雄別外套腹面長－体重関係

図 9 全個体の外套腹面長－体重関係

またそれ以外の月においても，2007年では12月，2008年では1月，5～6月，12月，2009年では1月にも，成熟個体が出現していた。

2．発生群

（1）外套腹面長と体重の関係

精密測定で得られた外套腹面長と体重のデータより，雌雄別の外套腹面長一体重の関係を図8に示した。

一般に重量（Y）と体長（X）の関係は，アロメトリ ー（相対成長）式Y＝aX（a，bは定数）で示される。そこ で，ソルバーを用いて最小二乗法により係数 a, b を求めた。雄：Y＝0．024 $\mathrm{X}^{2.34}$
雌： $\mathrm{Y}=0.04 \mathrm{X}^{2.2}$
の式が得られた。雄の方がやや大型の個体が出現してい た。

本来であれば蓄養場の重量測定データを，各階級ごと に精密測定で得られた雌雄比を用いて雌雄に分離し，ア ロメトリー式を当てはめ，雌雄別の外套腹面長組成を算出すべきである。

しかしながら雌雄の式に大差が無く，蓄養場の測定サ ンプル数も少ないため，雌雄をあわせたアロメトリー式全個体： $\mathrm{Y}=0.029 \mathrm{X}^{2.29}$
を用いて，外套腹面長組成を算出した。
雌雄あわせた外套腹面長一体重の関係を図 9 に示した。

（2）発生群の分解

混合正規分布への分解の結果，最小二乗法では全て収束，最尤法では収束しない場合が多かった。

最尤法ではソルバーのオプション設定の精度を 10^{-3} 程度に下げると収束したが，その場合の各パラメータは最小二乗法による結果と大差なく，AICもほとんど変わら なかった。そこで混合正規分布への分解は全て最小二乗法で行うこととした。

各年別月別の外套腹面長組成並びに，最小二乗法によ り得られた混合正規分布を図10に示した。各月に漁獲さ

れるマダコには，産卵時期の異なる $2 \sim 4$ 群が混在して いると思われる。

最小二乗法により得られた各正規分布の平均値につい て表1に示した。

この外套腹面長組成ならびに各正規分布の平均値を基 に，平均体長の月別推移を読み取ったところ，サンプル数が少ないためか，各群の平均値の連続的な推移は読み取ることができなかった。一方，2007春発生群，2007年秋発生群，2008年春発生群，2008年秋発生群と思われる群については，表2に示すように一定の平均値の連続し た推移を推定することができた。

3．成長

平均外套腹面長のデータが多く得られた2007年春発生群，および2008年秋発生群について，成長の起算月を産卵成熟個体が多くみられた 4 月および 9 月とし，ソルバ ーを用いて先のロジスティック式を推定した。ソルバー のオプション設定で非負数を仮定した。

用いたデータを表3に示した。2008年秋発生群につい ては，生まれてから漁獲サイズになる翌春までのデータ が得られなかった。そこで，春発生群のふ化後3ヶ月の データを用いるとともに， $1 \sim 4$ 月は低水温により水温 が停滞すると仮定し，月別データを作成した。

推定された各パラメータを表 4 に，実測値と推定され た成長曲線を図11－1～2に示した。

2007春発生群については， $1 ~ 4$ 月にかけて，成長が停滞している様子などがよく一致していた。

2008年秋発生群については実測値と推定稚はよく一致 していたが，推定値ではマイナス成長が見られた。

推定された2007春発生群と，2008秋発生群の最大外套腹面長はそれぞれ， 129 mm と 111 mm で春発生群の方が大 きくなることが推定された。

考 察

1．成熟

雌の GSI と卵径の月別推移より，本海域では主に春 の $3 \sim 4$ 月，および秋の $8 \sim 9$ 月に産卵が行われている ことが明らかとなった。

また，それ以外の月でも成熟した卵を持つ個体が確認 され，発生群は春，秋の大きな 2 群の他，いくつかの小さな発生群が存在していることが示唆された。

蓄養場での測定個体数や，漁業者からの聞き取り情報 から考えると，秋発生群の方が，春発生群に比べ個体数 が多いことが推察された。

これらは，伊予灘 ${ }^{2}$ や瀬戸内海域 ${ }^{11}$ での知見とおおむね

図10 外套腹面長組成および混合正規分布

一致するものであった。
GSIの上昇は外套腹面長が 70 mm 以上の個体でみられ ている。これは体重 500 g 程度に該当し， 500 g 以下の個体の漁獲禁止は，成長乱獲を防止するという観点で理に かなった措置といえる。

2．発生群

本調査では，測定サンプル数が少なかったため，混合正規分布の全ての山の平均外套腹面長の推移は把握で きなかったが，個体数の多い春，秋発生群の推移を把握 することができた。

各月に最大で発生月の異なる 4 群程度が混在してい

ることが明らかとなった。
坂口 ${ }^{2)}$ は伊予灘において，同手法を用いた解析の結果 6 群の発生群の存在を報告している。

本海域でも 4 月前後と 9 月前後に生まれた発生群の他に小規模な発生群が混在していると考えられる。

3．成長

マダコは雄は交尾後に，雌は産卵後，卵を保護し，卯孚化とともに死んでいくことが知られている。
孵化直後には外套長は 0.2 cm で， $1 \sim 2$ ヶ月間の浮遊期間を有し，${ }^{2.7)}$ 浮遊期間中の成長は緩やかで着底後急速 に成長すると考えられている。＂

表1 最小二乗法で得られた各正規

分布の平均値				
年月	発生群			
	U U3	U 2	U 4	
07年4月	29	75	102	110
5月	16	70	88	
6月	36	69	93	117
7月	42	67	85	107
8月	56	64	79	
9月	71	94		
10月	50	70	107	
11月	71	91		
12月	74	86	108	133
08年1月	91	96	128	
2月	47	84	96	103
3月	78	100	145	
4月	90	101	127	
5月	44	99	131	
6月	61	104	117	
7月	46	74	100	126
8月	69	84	105	
9月	48	70	75	
10月	69	81		
11月	68	76	87	
12月	88	123		
09年1月	73	88	102	129
2月	66	89	105	110
3月	68	95	108	119
4月	78	83	109	
5月	47	83	102	127
6月	44	68	107	132
7月	43	68	92	115
8月	72	83	93	
9月	75	96	113	

表2 正規分布の平均値から推定した発生群別外套腹面長の推移

表3 正規分布の平均値から推定した発生群別外套腹面長の推移

07，春発生群		08’ 秋発生群	
07＇年4月	0	9月	0
5月	16	10月	16
6月	36	11月	36
7月	42	12月	42
8月	56	09＇1月	42
9月	70	2月	42
10月	70	3月	42
11月	91	4月	42
12月	108	5月	47
08＇1月	128	6月	68
2月	103	7月	92
3月	145	8月	93
4月	127	9月	113

表4 推定された成長曲線の各パラメー ター

発生群	$\mathrm{L} \infty(\mathrm{cm})$	A	S	b	c
07春発生群	12.9	1.05	-1.57	3.68	0.80
08秋発生群	11.09893	1.17	-0.90	3.06	0.50

図11－1 推定された成長曲線（’07年春発生群）

図11－2 推定された成長曲線（＇08年春発生群）

また成長はそれぞれ季節によって異なり，水温が低下する冬期には鈍化するといわれている。2）
体長組成の推移より，本海域での寿命は 1 年程度と推定された。

4 月前後に生まれた春発生群は，前年の秋発生群と入れ替わるように同年の 9 月ごろより外套腹面長 70 mm を超えて漁獲され始め，12月には 110 mm 程度に成長し，冬期には成長が停滞するものの，翌年 4 月には 130 mm程度となり産卵に加わることが示唆された。

一方， $3 \sim 5$ 月にかけて外套腹面長 140 mm ，体重 2 kg を超える大型個体が漁獲されている。坂口 ${ }^{2}$ はこれらの春期に漁獲される大型個体について，ふ化後 16 ヶ月後に成熟，産卵する個体であるとみなしており，本海域でも同様の発生群がいる可能性がある。

また，9月前後に生まれた秋発生群は，冬期の成長停滞期を経て，翌年の 6 月頃より外套腹面長 70 mm 程度に なり漁獲され始め，9月頃には 110 mm となり，産卵に加わることが示唆された。一方，理論値では冬期にマイ ナス成長が見られるなど，式の当てはまりが良くない部分も見られた。

同じ筑前海の他の海域では 4 kg を超える個体もいる という漁業者の情報もある。

さらに詳細な成長様式を明らかにするためには，たこ つぼ以外の漁法に関しても調査範囲を拡げる事や，浮遊期稚仔調査を行らなど調査手法の改善を行っていく必要 があると考えられる。

4．資源管理について

以上より，本海域においてマダコは複数発生群が混在しているが， $3 \sim 4$ 月の春発生群， $8 \sim 9$ 月の秋発生群の 2 群が卓越していることが明らかとなった。

資源管理の手法は大きく分けると，加入管理と，成長管理がある ${ }^{8)}$ 平松支所では，産卵用のたこつぼを産卵期前に海中に投入することにより親魚および生み付けら れた卵の保護を計ったり，産卵期には使用漁具数を減ら すなどの制限を行っているが，これは加入乱獲の防止措置として有効な手法であろう。

また， 500 g 以下の個体の採捕禁止は，大きくしてか ら獲ることにより経済効率を高め，成長乱獲の防止に役立つ措置である。

一方，マダコの浮遊期は1～2ヶ月程度あるため，＂必 ずしも生まれた場所で脬化，着底し，成長していくわけ ではなく，ある程度広い範囲で生活史が完結しているも のと推察される。

効果的な資源管理を行っていくためには，個体群の生活史の範囲を網羅するある一定の広域的な連携が必要不

可欠であろう。
北九州市関門地区では，2009年9月17日に関係漁協支所（ 2 漁協 5 支所）のたこ漁業者によって，関門海峡 たこ協議会が発足され，今後，連携を深めながら資源管理に積極的に取り組んでいくことが確認された。これは関門地区のたこ漁業にとって非常に有意義なことである と考えられる。

また，‘関門海峡たこ’ ブランドのさらなる発展のた めには，安定的なマダコの供給が必要不可欠である。

今後も，当センターでは資源解析に関わる調査，研究を進めるとともに，当協議会と協力しながら，漁獲努力量のキャッピングや YPR 管理などに取り組み，マダ コ資源の持続的利用に取り組んでいきたいと考えてい る。

謝 辞

本研究に様々な形でご協力ならびに情報を頂きまし た北九州市漁業協同組合平松地区代表理事西口千歳氏，同平松支所元嘱託職員内田安昭氏，また毎月の測定個体 をご提供いただいた徳永信雄氏に心よりお礼申し上げま す。あわせて，調査手法等につきまして様々なアドバイ スを頂いた山口県内海水産研究センター内田喜隆氏には心よりお礼申し上げます。

文 献

1）内田喜隆，吉村栄一，木村博：山口県瀬戸内海域に おけるマダコの生態と資源変動，山口県水産研究セ ンター研究報告，第3号，45－54（2005）。
2）坂口秀雄：伊予灘東部海域におけるマダコの資源生物学的研究，愛媛県水産研究報告，第12号，25－94 （2006）。
3 ）五利江重昭：MS－EXCEL を用いた混合正規分布の パラメータ推定，水産増殖，50（2），243－249（2002）。
$4)$ 赤嶺達郎：正規混合分布のパラメータ推定における Hasselblad 法の収束，中央水産研究所研究報告， 14号，49－58（1999）．
5 ）田中二良：外房に於けるマダコ Octpus（Octpus）
vulgaris Lamarck資源の性状について。日水誌， 24 （8），601－607．
6 ）伊丹宏三•井沢康夫•前田三郎•中井吴三（1963） ：マダコ稚仔の飼育について，日水誌，29（6），514 －519．

7 ）武田雷介：播磨灘におけるマダコ浮遊期の分布，水産増殖， 38 （2），183－190．

8 ）松宮義晴：水産資源管理概論，水産研究叢書46，日本水産資源保護協会，東京，1996．pp 3－20．

